
9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

A Model-Based Development Process for
Embedded Systems

Ninth Bieleschweig Workshop, Hamburg, May 2007

Maritta Heisel

Joint work with Denis Hatebur

http://swe.uni-duisburg-essen.de
Email: {Maritta.Heisel,Denis.Hatebur}@uni-due.de

Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaft

1/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

DePES I

• Concrete process for developing embedded systems.

• Consisting of 12 steps, including

• requirements analysis
• system architecture
• software architecture
• component specification and implementation
• systematic testing

• Each step results in some document(s).

• Expressed mostly in UML notations.

• Validation conditions for checking coherence between
documents.

2/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

DePES II

• Developed over time and gradually improved in an
industrial context.

• Based on development processes for security- and
safety-critical systems according to the Common Criteria
and IEC 61508.

• Emerged from projects, e.g., development of smartcard
operating systems and applets for smartcards, and motor
control and automatic doors.

• For a complete description, see [Hat06].

3/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Principles underlying DePES

• Clear terminology

• Thorough environment modeling

• Stress on problem analysis

• Pattern usage
• problem frames
• architectural styles
• code patterns

• Model-based development
• develop sequence of models, each describing different

aspects of the system/machine
• models can be analyzed and checked for coherence

• Explicit process description with validation conditions

• Systematic testing

4/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Terminology [Jac01]

Machine thing we are going to build; may consist of
software and hardware

Environment part of the world where the machine will be
integrated

System consists of machine and its environment

Requirements optative statements; describe how the
environment should behave when the machine is
in action

Specification implementable requirements; describe the
machine; are basis for its construction

Domain knowledge indicative statements; consist of facts and
assumptions; needed to derive specification

5/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Phases of DePES I

• Problem definition
• Jackson-approach [Jac01] using problem frames
• dependencies between subproblems are made explicit
• specifications expressed using UML 2.0 sequence diagrams

• System design
• system architecture defined using UML 2.0 composite

structure diagrams

• Software design
• layered architecture
• extended four-variable model
• merge software architectures from subproblems

• Component specification
• sequence diagrams for component interface
• class diagrams and UML 2.0 state machines for component

description
6/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Phases of DePES II

• Software implementation

• coding patterns based on state machines available for Java

• Integration and testing

• testing against sequence diagrams set up in earlier phases
• new: use state-machine approach to test against

requirements

7/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

State problem, describe environment

• State requirements

• State facts and assumptions

• Model the environment using a context diagram

traffic lights
control

lights

crossing
waiting area waiting area

of secondary roadof main road

fire brigade

on lanes

vehicle_waiting

emergency_requestsee_red
see_green
see_yellow

enter,

enter,
leave

enter,
leave

leave

on, off
broken

road users

8/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Decompose problem: problem diagrams

• Decompose problem into simple subproblems

TLC
fault tolerance

tlc!{on,off}
l!{broken}

lights R6
light settings

R6 In case of a broken light bulb the traffic
lights should blink in yellow for the
secondary road, after all red lights have been
switched on for a period of time.

• Specify dependencies between subproblems:
sequential, alternative, parallel

< start > ::= (< main passing > || < fire > || < broken light >)
< main passing > ::= (MainRoadPassing < sec passing >)
< sec passing > ::= (SecondaryRoadPassing < main passing >)
< fire > ::= EmergencyRequestSecondaryRoadPassing

< main passing >
< broken light > ::= BrokenLightSafeState

9/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Fit subproblems to problem frames

Problem frames

• Are patterns for simple development problems

• Fitting a problem to some problem frame means
instantiating the frame diagram

• Example: required behaviour problem frame

Control
CD!C2
CM!C1

domain
Controlled

C

C3
machine behaviour

Required

• Problem of previous slide is instance of required behaviour

10/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Transform requirements into specifications I

For each subproblem:

• Use domain knowledge to transform non-implementable
requirements into specifications [JZ95].

• Express the specifications as sequence diagrams.
• Validation condition: signals in sequence diagrams must

be the same as phenomena in machine interface of
problem diagram.

sd

blink

BROKEN_BLINK

: lights

broken_light

: TLC fault tolerance

brokenconsider

broken

ref

11/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Transform requirements into specifications II

sd

BROKEN_BLINK

: lights : TLC fault tolerance

sec_yellow

all_off

 {t+0.9 .. t+1.1}

t=now

t=now

blink brokenignore

loop (1, *)

t=now

 {t+0.9 .. t+1.1}

 {t+2.9 .. t+3.1}

main_red

sec_red

unit =
second

BROKEN_BLINK

all_off

BROKEN_ALL_WAIT

12/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Set up system architecture

• System architecture consists of hardware and software
components

• Notation: UML composite structure diagrams

• Interface behavior of all programmable components must
be specified using sequence diagrams

• Validation condition: to each programmable component,
at least one subproblem must be associated.

: InductionLoop

 Control

emergency
request button at

lights
: LightsControl

:TrafficLights

 Controller

srr_if

road
on secondary
to detect cars
induction loop

bl_if

fire brigade

er_if

lights_on_off

bl

lights_on_off_if

srr

TLC

13/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Software design: layered software architecture

• Basic idea: application layer software should have the the
same interfaces as the machine, i.e., monitored and
controlled variables [BH99].

• Thus, application layer becomes device-independent,
device dependencies are factored out in IALs and HALs.

 Actuators Sensors

Component Behavior (Phase 6)

^

Application Component Behavior (Phase 8)

^

Application Component Behavior (Phase 8)
System Behavior (Phase 4) =

System Behavior (Phase 4) =

 Application

 Sensor IAL Actuator IAL

 Sensor HAL Actuator HAL

Hardware

ControlComponent

14/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Architectural patterns, global software architecture

• We have defined a layered architecture for each of
Jackson’s problem frames [CHH05].

• Hence, for each subproblem fitted to a problem frame, we
get a (preliminary) software architecture.

• The global software architecture is defined by merging the
subproblem architectures according to rules based on the
subproblem dependencies (problem definition phase)
[CHH06].

15/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Traffic light control: global software architecture

 Driver Driver
 Driver
 Request

AbstractionIAL

TrafficLightApplication

InductionLoop LightsInterface

 LightsDriver InductionLoop BrokenLight Emergency

 Microcontroller

emergency
request button at

LightsControl

TrafficLightsController

er_if’bl_if’

lights_on_off_if’

lights_state_if

srr_if’

srr

irq8ports irq9irq7

induction loop
to detect cars
on secondary

road
fire brigade

bl_if

lights_on_off_if

er_if
srr_if

16/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Component specification

• Interface specification using sequence diagrams

• Component description using interface classes and state
machines

• Validation conditions: state machine must be complete
and generate the behavior stated in the sequence diagrams

sd InductionLoopIAL

InductionLoopIAL

srr ()

vehicle_
waiting ()

��
��
��

��
��
��

wait_for_srr

InductionLoopIAL

vehicle_waiting ()

srr () /

17/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Component implementation: pattern for Java

Req (Id)

Busy

Idle

[Id>10] /
Major (Id),
MajorReq := Id

[Id<=10] /

MinorReq := Id
Minor (Id),

public class ComponentName implements provided_if {

static final int IDLE = 0, BUSY = 1;

private req_if ri;

private int state;

...

public ComponentName (req_if ri_) {

state = ... // Init state

ri = ri_;

}

public void Req(int id) {

switch (state) {

case IDLE:

if (id<=10) {

if (ri!=NULL) ri.Minor (id);

state = BUSY;

} else {

if (ri!=NULL) ri.Major (id);

state = BUSY;

}

break;

default:

assert false: "FSM error Req";

}

} ...

}

19/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Quality assurance

Achieved by

• Checking validation conditions as specified in process
descriptions

• Systematic testing

Systematic testing:

• Develop test cases during earlier phases of the
development, i.e., before the implementation

• Test against requirements also, not only against
specification

• For this purpose: model environment by stochastic
processes (work in progress)

20/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

DePES: all steps I

1. Describe problem

2. Consolidate requirements

3. Decompose problem

4. Derive a machine behavior specification for each
subproblem

5. Design global system architecture

6. Derive specifications for all components of the global
system architecture

21/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

DePES: all steps II

7. Design an architecture for all programmable components
of the global system architecture that will be implemented
in software

8. Specify the behavior of all components of all software
architectures, using sequence diagrams

9. Specify the software components of all software
architectures as state machines

10. Implement software components and test environment

11. Integrate and test software components

12. Integrate and test hardware and software

22/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Relating software phases of DePES to Common
Criteria and ISO/IEC 61508 I

CC documents 61508 process step DePES

ST (Security Target) Software/E/E/PES safety
requirements specification

1-4

ADV FSP (Func-
tional Specification)

Specification part of Soft-
ware/E/E/PES safety re-
quirements specification

6

ADV ARC (Security
Architecture)

Software architecture 7

ADV TDS (TOE De-
sign)

Software system design /
Module design

8-9

ADV IMP (Imple-
mentation represen-
tation)

CODING 10

ADV = Assurance class for Development
23/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Relating software phases of DePES to Common
Criteria and ISO/IEC 61508 II

CC 61508 DePES

ATE DPT (Depth) Module and Integration
testing

10

ATE FUN (Func-
tional Tests)

Integration and validation
testing

11

ATE = Assurance class for Testing
ATE COV (Coverage) and ATE IND (Independent testing) are
not explicitly given in 61508 and DePES, but are part of the
respective testing phases.
DePES phases 5 and 12 are not mapped since these phases
consider hardware.

24/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

What do we gain by defining such a process? I

Fact

DePES is not a light-weight process!

• Certification according to safety- and security standards
(IEC 61508 and Common Criteria) is supported.

• Sequence of well-defined steps helps developers to focus
attention on relevant parts of the task (and fake a rational
design process ;-).

• Developed models and their interrelations can be checked
in each step.

• Special attention is paid to the analysis phase and the
modeling of the environment. (Environment models yield
test cases.)

25/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

What do we gain by defining such a process? II

• Non-functional (quality) characteristics can be taken into
account (in particular, safety and security; by specific
architectures and problem frames).

• Problem decomposition is performed explicitly and
systematically. Relations between subproblems are
exploited to compose partial solutions of subproblems.

• Using patterns in various phases support re-use of existing
knowledge and (partial) automation.

• Various possibilities for tools support:
• UML tools available.
• Tool for generating sequence diagrams available.
• Model checker for UML state machines available.
• Other tools conceivable.

• Process emerged from industrial practice, uses
well-established languages and techniques.

26/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Literature I

Ramesh Bharadwaj and Constance Heitmeyer.
Hardware/Software Co-Design and Co-Validation using the
SCR Method.
In Proceedings IEEE International High-Level Design
Validation and Test Workshop (HLDV 99), 1999.

Christine Choppy, Denis Hatebur, and Maritta Heisel.
Architectural patterns for problem frames.
IEE Proceedings – Software, Special Issue on Relating
Software Requirements and Architectures, 152(4):198–208,
2005.

Christine Choppy, Denis Hatebur, and Maritta Heisel.
Component composition through architectural patterns for
problem frames.
In Proc. XIII Asia Pacific Software Engineering Conference,
pages 27–34. IEEE Computer Society, 2006.

27/ 28

9th
Bieleschweig
Workshop

M. Heisel

Introduction

Principles

Terminology

Phases

Problem
definition

System design

Software design

Component
specification

Component
implementation

Quality
assurance

Relation to
standards

Conclusions

Literature

Literature II

Denis Hatebur.
A pattern- and component-based process for embedded
systems development.
Master’s thesis, University Duisburg–Essen, 3 2006.
http://swe.uni-duisburg-essen.de/intern/dpes.pdf.

Michael Jackson.
Problem Frames. Analyzing and structuring software
development problems.
Addison-Wesley, 2001.

Michael Jackson and Pamela Zave.
Deriving specifications from requirements: an example.
In Proc. 17th Int. Conf. on Software Engineering, Seattle,
USA, pages 15–24. ACM Press, 1995.

28/ 28

	Introduction
	Principles
	Terminology

	Phases
	Problem definition
	System design
	Software design
	Component specification
	Component implementation
	Quality assurance

	Relation to standards
	Conclusions
	Literature

