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Background: Systems, Safety, Agents, Joint Behavior

A “system” is best defined as a collection of objects that exhibit joint behavior. An object which 
exhibits behavior is often known as an agent; so a system is a collection of agents. Engineering 
systems are designed by humans to fulfil a particular purpose, to achieve a set of goals, thus they 
may be deemed “teleological”. Besides those other agents in the system with which an agent might 
interact, system agents interact with – that is, exhibit joint behavior with - objects not in the system. 
These jointly-interacting but non-system agents constitute the “environment” of the system.

Consider a desktop or laptop computer. Such a system consists of agents – chips and other 
electronic components sitting on a motherboard, screen and keyboard, connections to other devices 
known as “peripherals”. A user can be considered to belong to the environment, through which 
interaction takes place over very narrow channels: keyboard input on the one hand and screen 
output on the other. Such interaction is not necessarily best analysed or understood using linguistic 
constructs. Neither is desktop computer use in its computational function per se either safety-critical 
or safety-related.

However, there are systems consisting of discrete agents in which joint behavior involves explicit 
communication, and in which this communication may have implications for safety. Consider a 
highway system, with a junction uncontrolled by STOP signs or traffic lights. You drive up to the 
junction and stop; to your right, another vehicle drives up and also stops. The driver gestures with 
her hand towards you, and moves her hand across the windshield in your direction of travel. You 
take her to be waving you across, and accelerate. She was, however, attempting to indicate to you 
the traffic jam on the other side, and that you cannot therefore proceed, expecting you to conclude 
that she, however, can. She also accelerates; you both collide. The interaction, though performed by 
means of gesture, admits analysis in linguistic terms because, well, that is how it was just explained 
what the miscommunication consisted in!

A road system is only partially engineered. Some teleological transport systems are more 
thoroughly engineered, down to the communication amongst agents, for example railways and air 
traffic.  Both involve safety-critical behavior, as does road transport. We shall consider some cases 
in which technical, partially- or fully-controlled communication amongst system agents and the 
environment plays a fundamental role critical for safety.

What does “safety-critical” mean? The concept “safety” is defined in a number of ways in the 
engineering literature when talking about the safety of systems. One definition is: freedom from 
accidents [Leveson 1995], where an accident is defined as unwanted but not necessarily unexpected 
behavior of some kind. Another definition, in the international standard governing the functional 
safety of systems involving programmable-electronic components: freedom from unacceptable risk 
[IEC 61508]. Risk is defined here in the usual way as the combination of the probability of harm 
occurring and the severity of that harm, where harm is considered to be physical injury or damage 
to the health of people, or damage to property or the environment. 



Much behavior which has consequences which may be critical to safety is regulated within a system 
by human agents – for example, a policeman directing traffic at a busy intersection. Other 
examples: air traffic control is intended to ensure the physical separation of participating aircraft; 
train dispatching protocols coordinate the behavior of trains running in opposing directions, or 
different-speed trains running in the same direction, on single-track lines. 

Traditionally, these protocols are purely verbal, but increasing use is made of automated helper 
systems, such as the ASCII-text CDPLC system for relaying ATC clearances and 
acknowledgements between computers on board and in air traffic control centers, with initiation and 
checking performed by humans, or the computer-based protocol-aiding systems on board regional 
dispatched trains on Austrian railways [Stadlmann 2004]. Such protocols are synchronous, in the 
sense that both initiating agents are interacting in real time, whether the communication is mediated 
by digital-electronic devices or not.

Not all communications involving human agents take place between two human agents, however. 
Central monitoring system messages in complex modern aircraft determine the status of various 
critical systems and relay changes in status to an electronic bulletin board which the pilots read. 
These communications are different from the verbal-exchange protocols in that one communication 
channel, from the central monitoring system to the pilot's screen, is designed asynchronously, 
including its execution. The execution is controlled by synchronous events, but the system adapts 
according to algorithms which have been designed in the engineering workshop largely before the 
aircraft was built, and certainly before it flew its present trip. 

We consider some incidents in which these communications went wrong, and how they may be 
repaired. Potential or actual solutions to the problems exhibited are often not primarily linguistic but 
involve technical measures to which linguistic features contribute. 

The verbal protocols used in air traffic control are crucial to the safety of air travel, a major mode of 
transport used by increasingly many. Thus arises the question why more attention has not been paid 
by researchers and engineers to this domain. Here are some possible reasons.

First comes a social reason. The skills of safety-critical system analysis and development consist in 
hazard analysis, safety requirements derivation, risk analysis, risk avoidance and mitigation; 
understanding and knowing how to use the basic concepts and techniques. To the author's 
knowledge, there are few linguists, with the possible exception of Cushing (below), who possess 
these skills to the necessary degree. Similarly, computational-linguistic skills, skills in formal 
semantics and syntax, and in discourse analysis and the engineering of controlled languages, are 
generally not to be found amongst safety-critical system engineers. 

Second, the verbal protocols in, say, air traffic control work nowadays very well. Major accidents in 
which air traffic control behavior has played a role most often involve passivity – a controller could 
possibly have intervened in anomalous aircraft behavior, but somehow did not. Such situations are 
not primarily linguistic and so are of less interest here. In the first half of 2010, major accidents 
disproportionately involved a loss of control or of situational awareness, and non involved 
difficulties with verbal crew-ATC protocols – see for example [Ladkin 20100903].

There are two notable commercial air accidents in the past 15 years in which aspects of the verbal 
ATC-flight crew protocols played a causal role. We analyse the linguistic aspects of both these 
situations.

The other set of verbal protocols considered are those for train dispatching on non-signalled single-



track lines. Such lines are relatively rare in Europe (although not in, say, Australia, where such lines 
may be hundreds of miles long, and exhibit quite different phenomena), and relatively sparsely used 
(for otherwise they would be signalled). So the system is not as pervasive as that for air traffic. The 
protocols are simpler, less involved, and arguably more robust. These characteristics enable 
technical solutions to reliability and accuracy problems, as will be shown, which solutions could be 
considered exemplars for how one may go about the task of increasing reliability, accuracy and 
safety in the air-traffic environment.

Case Study: The TCAS Collision Avoidance System in the Überlingen Midair Collision, 2002

On 1 July, 2002, a Tupolev 154M commercial jet transport aircraft, operated by Bashkirian Airlines 
(BTC),  a Russian airline, was flying westwards at night over Southern Germany towards a 
destination in Catalunya. A Boeing 757 operated by the cargo airline DHL was flying northbound 
over Switzerland, at the same Flight Level 360 (representing a nominal altitude of 36,000 feet in a 
“standard” atmosphere). Both were operating under Instrument Flight Rules (IFR), compulsory at 
this Flight Level. Skyguide, the Swiss air traffic control organisation, had control of both aircraft in 
its Zürich center, and accordingly had responsibility for separation of the aircraft.

The controller on duty was operating two positions, some meters apart, because colleagues were on 
break. He was working primarily with other traffic at one position, and only noted the convergence
of the two aircraft close to the limit of  the separation he was required to ensure (7 nautical miles 
lateral and/or 1,000 ft vertical separation). Another air traffic control facility at Karlsruhe had 
noticed the convergence, but was unable to contact Zürich Center through the dedicated 
communication channel, which was undergoing maintenance. An automatic ``early warning'' 
system installed at  Zürich Center was also undergoing maintenance and did not trigger.

The controller issued a verbal avoidance manoeuvre to BTC to descend immediately.  However, 
both aircraft  received a Resolution Advisory from their on-board Airborne Collision Avoidance 
System (ACAS) devices, both TCAS II Version 7.0 from the company ACSS, virtually 
simultaneously with this instruction. The avoidance manoeuvres advised by TCAS are strictly 
vertical: one aircraft is advised to climb, and the other to descend. The rates at which these 
manoeuvres are to be accomplished are also normed in the TCAS protocol: a smooth 1/4g 
acceleration to a climb, resp. descent rate of 1,500 feet per minute is to be performed.  TCAS 
advised to BTC an immediate climb, and to DHL an immediate descent

DHL descended. The BTC commander also instructed his Pilot Flying (PF) to descend. 7 seconds 
later, the air traffic controller repeated his descend instruction to BTC with an note to ``expedite'', 
for traffic which he mistakenly described as at the ``two o'clock'' relative position. (The direction of 
flight is “twelve o'clock”; two o'clock is two segments to the right, so two-twelfths of 360°, 60° 
right of BTC's direction of flight.) BTC was in fact at ``two o'clock'' to DHL; DHL was 
correspondingly at ``ten o'clock'' to BTC. This was a cognitive slip by the controller. Such slips are 
not uncommon, and normally inconsequential. In this case, however, it caused the BTC commander 
to believe he was in a three-aircraft conflict, with DHL, whose lights the crew could see and had 
identified at their ten o'clock position, and with an unknown aircraft which his TCAS display was 
not ``seeing'', at his two o'clock position [BFU 2004]. ( Ladkin had speculated
that this might have been so already in [Ladkin 20020812]. The present analysis is based heavily on 
the final paper [Ladkin 2004].)

7 seconds later, DHL received an ``iterated advisory'' to ``increase descent'' (to a normed rate of 
2,500 fpm). 9 seconds after that, DHL informed air traffic control that he was in a ``TCAS descent''.

Air traffic control procedures are such that the controller is no longer responsible for separating 



traffic responding to TCAS Resolution Advisories until it is reported to himher by the participants 
that they are ``Clear of Conflict''. However, a controller may continue to provide information to 
participants during the manoeuvres. The air traffic controller conformed with this procedure.

11 seconds after DHL informed the controller of the TCAS descent, the two aircraft collided.

TCAS is a system which of which the agents are a visual and aural display, along with “advisories”, 
issued according to a programmed algorithm. The agents which activate the avoidance manoeuvre 
are the human pilots of the involved aircraft. The communication between TCAS agent and human 
is visual, and aural (involving commands expressed as English sentences). What of communication 
between ATC and TCAS or ATC and aircraft crew? The TCAS “philosophy” is that TCAS only 
triggers an RA when ATC separation has “failed”;  it is an on-demand system implementing a 
function based on the hypothesis that ATC has failed to fulfil its function. Hence TCAS is 
considered as a system, by some only involving the two programmed boxes and associated 
electronics, but this is analytically inadequate because the crucial joint behavior, the avoidance 
manoeuvre is initiated and performed by the human crews of the aircraft; the TCAS boxes issue 
“advisories”. So TCAS boxes plus flight crew of each aircraft belong to the “system”. ATC is not 
considered to be part of the system: TCAS is predicated on failure of ATC function and one wants 
to remedy this failure through TCAS, not incorporate the failure into the system itself.

However, this part of the TCAS “philosophy” (i.e. modus operandi as construed by the designers) is 
also inadequate to the reality, as shown clearly in this accident. The controller issued information 
from which the BTC crew could infer the presence of a third aircraft with whom they also had a 
conflict. This aircraft was “phantom”, the statement containing this information mistaken. But BTC 
took this information as correct, which is appropriate given the understood roles of the participants, 
and made a decision based on it. 

They were in fact presented with a decision problem: one can only go up or down; one sees an 
aircraft which TCAS is likely telling one to avoid; there is another aircraft which one does not see 
(either visually or metaphorically via TCAS display), but which the controller sees, and given the 
sense of the controller's instruction is likely at the same flight level or above. Two “threatening” 
aircraft; only two directions (up/down), either choice exacerbates one conflict or the other. BTC 
choose to descend, and have been widely criticised in the literature for so choosing. Ladkin 
suggested that decision to have been rational, given the crew's understanding of the state of the 
airspace and its occupacy, and gave reasons in [Ladkin 2004]. This is not the focus of  the 
observations here. Neither is the apparent TCAS algorithm discrepancy which failed to issue a so-
called “reverse RA” to DHL when TCAS sensed that separation was not being insured by the first 
RA, for that is a pure system issue, and not linguistic. (This anomaly has been fixed by Change 
Proposal 112E in the most recent version of TCAS, Version 7.1.)

The relevant observation here concerns the causal efficacy of mistaken information in a 
communication that was legitimate according to protocol but involved a not-uncommon cognitive 
slip. This information gave the BTC crew a mistaken understanding of the state of the airspace 
around them: they were considering two “threats”, not one. In fact, all three participants in this 
interaction, the two TCAS participants and the Zürich Center controller, had at this point three 
mutually incompatible understandings of the situation. 

The situation can be expressed as simply as states of parameters. 

Parameters: 
posn: vertical and horizontal position; correspondingly Dposn for DHL position and Bposn for BTC 
position, with its two components:



hpn: horizontal position; correspondingly Dhpn and Bhpn
alt: altitude (vertical position); correspondingly Dalt and Balt
RA: an RA has been issued
sense: the sense of the RA is known, correspondingly Dsense and Bsense, which should be opposite
move: the up/down/level horizontal motion of an aircraft, correspondingly Dmove, Bmove.
phantom: there is a (third) aircraft at BTC's two o'clock

The collection of values of these parameters will be called here the state of the airspace. To indicate 
who has what information, and who does not have it,  + and – signs are used. The state consists of 
the values of the parameters thus:
Dposn, Bposn, +RA, Dsense down, Bsense up, Dmove down, Bmove down, --phantom

However, a rational reconstruction of the state of knowledge of the three main actors during the 
crucial initial few seconds of the encounter yields

ATC: +Dposn, +Bposn, --RA, --Dsense, --Bsense, --Dmove, Bmove level, --phantom
DHL crew: +Dposn, +Bhpn, --Balt, +RA, +Dsense down, +Bsense up (inferred), +Dmove down, 

--Bmove,  --phantom
DHL TCAS: +Dposn, +Bposn, +RA, +Dsense down, +Bsense up (inferred), +Dmove, +Bmove, 

--phantom
BTC crew: +Dhpn, -Dalt, +Bposn, +RA, +Dsense down (inferred), +Bsense up, --Dmove, 

+Bmove down, +phantom
BTC TCAS: +Dposn, +Bposn, +RA, +Dsense down (inferred), +Bsense up, +Dmove, +Bmove, 

--phantom

A simple observation is that all these five understandings of system state are different. Are they 
compatible? BTC crew's state is compatible with that of no other participant, because of the value 
of phantom. DHL crew's understanding is compatible with that of DHL TCAS. ATC's 
understanding is incompatible with that of no other participant, because of the value of RA. DHL 
TCAS and BTC TCAS are mutually compatible (which we would hope!).

Ladkin called these rational reconstructions of the partial system state, given the knowledge of each 
agent, the agent's Rational Cognitive Model (RCM) of the situation [Ladkin 2009]. Note that two of 
the agents are boxes, DHL TCAS and BTC TCAS.

It is normal that in the design of safety-critical systems states are identified which can be deemed to 
be hazardous, that is, roughly speaking, states in which the chances of an ensuing accident are much 
increased over those chances in a non-hazardous state (there are in fact various different notions of 
hazard in various engineering domains, which this loose statement attempts to cover). This state, in 
which many but not all significant agents have incompatible understandings of the partial state, is 
obviously hazardous – the aircraft collided seconds later!

Hazard analysis (HazAn) attempts to identify all hazardous situations in system operation, and 
avoid them or mitigate the possible consequences. HazAn is required by most standards for 
development of safety-critical systems, as here also. It is clear from the above that hazardous states 
can issue from communication of mistaken information. The questions which interest 
communications specialists, and which must be answered, are which hazardous states thereby 
ensue? And what to do about them? Analysis of this example here has indicated that answers may 
be found using techniques of finite-state combinatorics and analysis, techniques which are well-
known to formal linguists.

Ladkin has proposed principles for the design of such systems,  which principles can help avoid 



such hazard states as the above [Ladkin 2009]. One such principle is the Rational Cognitive Model 
Coherence Criterion, that all participants' RCMs, their partial understandings of state, are 
compatible. Another is the Mutual Cognisance of Relevant Parameters criterion, that agents who 
need to know the value of certain parameters should have the true values available. Here, ATC did 
not know RAs had been issued until well into the interaction; and DHL did not know that BTC was 
also descending. It is of course a far cry from knowing which principles were violated to being able 
to devise protocols which adhere to them! For example, one instance of MCRP violation is 8we 
may hope!) solved by CP112E. The other may be solved by downloading RA status, when two are 
issued, automatically to ATC. However, controllers have legitimate worries about the intended use 
of such information and their responsibilities upon reception of it, and such worries have not been 
resolved at time of writing.

Case Study: Controlled Collision with Terrain on approach into Cali airport, Colombia, 1995.

On 20 December, 1995, an American Airlines Boeing 757 commercial passenger jet aircraft was 
flying into Cali airport in Colombia at night. Cali airport lies in a long, narrow valley surrounded by 
high mountains, and the runway lies along this valley, aligned at 10° right of magnetic north, 
allowing one to land to the south (on the end labelled Runway 19, the 19 standing for 190° 
magnetic on the compass) or to the north (on RWY 01, at 10° magnetic). To approach, an aircraft 
has to descend within the valley directly aligned with the runway, towards one end or the other, so 
at a heading of 10° magnetic or 190° magnetic, depending. The crew were used to overflying the 
airport, turning back, and landing to the north on RWY 01. However, on a sparse-traffic night they 
were offered a “direct” “straight-in” approach to RWY 19. They were unfamiliar with that 
approach, and hurried to find it in their charts (called “approach plates” because each is printed on 
one standard-format page. They may be found in Appendix C of the accident report in [Aeronautica 
Civil, Cali 1996].)

There was also some informational confusion. This account follows closely the account in 
[Gibbon&Ladkin 1996]. Here is the pilot-ATC exchange, taken verbatim from the accident report, 
from the original approach clearance to the end of reported conversation. 

Approach replied, "Roger 965 is cleared to the VOR DME approach runway one niner, 
ROZO Number One arrival, report Tulua VOR"

The flightcrew readback was, "Cleared the VOR DME one niner ROZO one arrival, we'll 
report the VOR, thank you Sir"

Cali approach immediately clarified with, "Report Tulua", and the flightcrew immediately 
acknowledged, "Report Tulua"

The flightcrew referred to the cockpit chart package (approach publications) after ATC 
instructions to "Report Tulua"

Flightcrew discussion took place about the navigational aids to be used in the ROZO 1 
Arrival, specifically their position relative to Tulua

About 30 seconds later the flightcrew requested, "Can American Airlines 965 go direct to 
ROZO and then do the ROZO arrival sir?"

Several radio transmissions then took place: Approach replied, "affirmative direct ROZO 
one and then runway one niner, the winds calm". The flightcrew replied, "all right, ROZO, 



the ROZO 1 to 19, thank you, American 965". And the controller stated, "Affirmative, report 
Tulua and twenty one miles, 5000 feet". The flightcrew acknowledged, "OK report Tulua, 
twenty one miles at 5000 feet, American 965"

Gibbon and Ladkin remark that AA965's request (after the phrase `About 30 seconds later') 
demonstrates a linguistic expectation. Going `direct to ROZO and then do the ROZO arrival' only 
makes sense if one expects that navigation fix ROZO is at the beginning of the ROZO One arrival. 
Which it isn't. A look at the approach plate in Appendix C of the report [op.cit.] shows that the 
ROZO navigational beacon is at the end of the ROZO arrival, not at the beginning. In the US, all 
such arrivals are named after the start point, not the end point as here. 

Gibbon and Ladkin suggest that this reversal of the naming convention common in the US may 
have induced semantic dissonance in the US crew, which can lead to confusion with respect to 
temporal as well as spatial location (see, for example, [Gibbon 1995]). However, they note that the 
opposite is true with road naming conventions in a variety of cultures, e.g., close to where the 
author lives in Germany, between-town roads are named with the presumed goal: the very same 
road is called the Wertherstrasse (Werther road) in Bielefeld, and the Bielefelder Strasse (Bielefeld 
road) in Werther. The entry point for the ROZO One arrival is in fact the Tulua navigation beacon, 
some 22 nautical miles before the Initial Approach Fix (IAF) for the RWY 19 approach, which IAF 
is itself 9 nautical miles before the ROZO beacon, which is the Final Approach Fix (FAF) for the 
approach to RWY 19, 2.6 nautical miles before the threshold of RWY 19.

Ladkin and Gibbon note that the ATC response `affirmative' to this request is incorrect. AA965 
cannot procedurally fly what they requested; therefore the controller's confirmation of that request 
is wrong. An ATC “clearance”, which is what the flight crew and the controller are discussing, is 
both a commitment by ATC to keep the airspace clear for the space and time slots indicated and a 
mandatory (but revisible) routing instruction. Any clearance must therefore be a possible routing. 
Which the putative clearance contained in AA965's request is not. (When asked why he replied 
“affirmative”, or “yes”, when he knew that the correct reply was “negative”, or “no”, the controller 
cited relative status – he conceived of his to be much lower than that of airline pilots – and a 
consequent unwillingness to be seen to contradict people of higher status, even when he could see 
they were mistaken [Aeronautica Civil – Cali 1996]).

Ladkin and Gibbon also note the following words spoken by ATC: `direct ROZO one' (a complete 
phrase, as indicated by the following conjunction, `and'.) and that it is a syntactically incorrect 
phrase in any grammar of pilot-controller speech. The word `direct' must be followed by the name 
of a navigation fix. If “ROZO” is interpreted as the fix, the word `one' is then superfluous. The 
entire phrase `ROZO one' denotes an arrival, and an arrival name cannot correctly follow the word 
`direct'. They suggest that the lexical ambiguity between fix (a point) and arrival (a procedure) 
enabled production of this syntactically incorrect and semantically confused phrase.

The Rational Cognitive Models of the participants may be reconstructed thus, as they evolve 
through time.

ATC: ROZO One arrival [Tulua fix to ROZO fix]; then RWY 19 approach [ROZO fix to RWY 19].

AA965: Confirm: ROZO One arrival [unknown fix to unknown IAF RWY 19]; then RWY 19 
approach [unknown IAF to RWY 19]

ATC: Report overhead Tulua fix [at start of ROZO One arrival]

AA965: Confirm: Report overhead Tulua fix [?expectation: at end of ROZO One arrival?]

http://coral.lili.uni-bielefeld.de/~gibbon/nextthur.html


AA965: Request: fly direct to ROZO fix and then ROZO One arrival [ROZO to unknown  IAF]

ATC: Affirm request. {Semantically inconsistent phrase}; and then ROZO One arrival [ROZO to 
RWY 19]

AA965: Confirm  ROZO fix and then ROZO One arrival [ROZO to unknown IAF] and then RWY 
19 approach [unknown IAF to RWY 19]

ATC: Affirm. Report overhead Tulua fix.

AA965: Confirm. Report overhead Tulua fix.

We can represent the data structures here, giving the semantics of the phrases, by pairs: <x,y> 
represents flying from overhead Fix x to overhead Fix y; and by sequencing: <x,y>;<z,w> 
represents flying <x,y> and then <z,w>, and z must equal w (that is, either identical, or two 
different designations for the same fix). We may also compose, namely <x,y>;<z,w> may be 
represented by <x,y=z,w>. Then the syntax and semantics of the interchange proceeds as follows. 
Each line has three components, namely agent:syntax:semantics, with the components separated by 
colons. “Arr” abbreviates “arrival” and “App” “approach”. Elements of a sequence are denoted by 
“.first”, “.second”, etc. Here, the Initial Approach Fix for the RWY 19 approach is the point at 21.0 
nautical miles on the 013° radial of the Cali VOR navigation beacon (identifier CLO) [Aeronautica 
Civil – Cali 1996]. I abbreviate by CLO013/DME21.0

ATC: ROZO One Arr; RWY 19 App: <Tulua,IAF=CLO013/DME21.0,FAF=ROZO,RWY 19> 

AA965: ROZO One Arr; RWY 19 App: <unknown,unknown=IAF,unknown=FAF,RWY 19>

ATC: Say overhead Tulua: say overhead clearance.first

AA965: We say overhead Tulua: say overhead clearance.unknown .
Supposition: clearance.unknown is clearance.second or later

AA965: Request ROZO and then ROZO One Arr: <ROZO,unknown=IAF,unknown=FAF,RWY 19>

ATC: Affirm, {inconsistent} and then ROZO One Arr: inconsistent

AA965: ROZO and then ROZO One Arr and then RWY 19 App:    
<ROZO, unknown=IAF,unknown=FAF,RWY 19>

ATC: Affirm, Say overhead Tulua: say overhead clearance.first

AA965: We say overhead Tulua: say overhead clearance.unknown

It is clear from this representation of the syntax and semantics of these communications that the 
syntax is ambiguous and the RCMs of the participants are inconsistent, and remain so despite 
repeated attempts to unify them. This sequence shows a clear violation of RCMC and MCRP.

The following then happened. Because AA965 considered ROZO to be clearance.first, they 
attempted to fly direct. Unbeknowst to them, there was another navigational beacon, with the 
selfsame abbreviated identifier and the same frequency as ROZO, lying roughly at the nine o'clock 
position and within reception range. Upon entering the data for ROZO in the flight management 
computer, the autopilot then began a left turn towards this other beacon, ROMEO, which went 
unremarked by the crew for some significant portion of a minute. They deviated from the line of the 



valley, and now had mountains in between them and the airport. However, they continued to 
descend into the airport. Upon realising the aircraft was flying in the wrong direction, the crew 
finally initiated flight towards the right fix, but there were now mountains in the way. As the aircraft 
flew towards a mountain, the ground proximity warning sounded, but the “escape manoeuvre” was 
not successful and the aircraft hit the mountain.

The above analysis proceeded, as did the analysis of the Überlingen midair collision, by 
representing the cognitive states of participant agents by simple data structures. Unlike in the 
Überlingen case, some concerted attempt was made to reconcile the RCMs of the participants 
through the usual ATC-pilot communication format, but this format was ambiguous (strictly: the 
same phrases were allowed different semantics). Also, the ATC mistake in the Cali situation was 
deliberate, engendered by social concerns, rather than being inadvertent as with Überlingen.

An attempt to enforce RCMC and MCRP in this case would involve disambiguating the language. 
This is formally straightforward: for example, one could require participants to enumerate explicitly 
the semantics - their understood sequence of fixes - saying “unknown” where they do not know, 
allowing a knowledgable communication partner to precisify. However, this would involve a major 
change in ATC-pilot communication. It is not clear whether such a major change would avoid more 
accidents than it might engender, for every change requires some time for it to mature in use. 

We may observe that, once again, simple finite-state methods enable an adequate analysis of the 
communications and suffice to generate suggestions for avoiding or mitigating hazards.

The Linguistics of ATC-Pilot Communication: Work of Stephen Cushing and Extensions

The linguist Stephen Cushing investigated linguistic phenomena in ATC-pilot communication 
leading to incidents and accidents on behalf of NASA in 1987-9. His results were presented in 
[Cushing 1994], predating the accidents above and their analysis.

Cushing compiled a superb collection of examples, largely drawn from NASA's Aviation Safety 
Reporting System, an anonymised reporting facility guaranteeing immunity for reporters, intended 
to identify trends as well as individual occurrences or potentially hazardous situations so that these 
could be preempted if necessary by regulators in the hope of reducing accident statistics. 

Cushing identified problems of ambiguity (as we considered in the case studies above), homophony 
(similar-sounding phrases having different meanings, for example similar aircraft call-signs and 
consequent misunderstandings of a crew that a clearance intended for another aircraft was in fact 
for them), the influence on meaning of spoken punctuation and of intonation. He identified 
problems of reference: uncertain reference, unclear addressee and unclear hand-off (an air traffic 
control procedure for assigning an aircraft to a different controller), which overlap with problems 
with homophony. Then there are problems of inference, including implicit inference, lexical 
inference, and false assumptions, as we have seen above concerning the Cali accident. Then come 
problems of repetition, especially involving readbacks, which we have also seen in the Cali case 
study above. There are problems with numbers and their abbreviations, in particular for radio 
frequencies, in navigational procedures, for runways, and for altimeter settings (communications of 
the local barometric pressure). He noted problems with radios, problems of compliance, and general 
problems of technical communication loss such as lost messages or garbled message contents. 
Although such problems are formally recognised and adherence to the controlled language of ATC-
pilot communication is supposed to be a prophylaxis, Cushing's investigations showed just how big 
a gap there is between the reality of everyday ATC-pilot communication and the solutions offered 
by the controlled language promulgated by the aviation regulatory authorities [FAA ATC 
Phraseology].



One reason for the continuing discrepancies may well be found in work of the organisational 
sociologist Jens Rasmussen [Rasmussen 1997]. He observed that human agents in their everyday 
work devise ways of getting their job done optimally. That is, optimally for them, and the agent may 
well have different goals from the designers of the system within which heshe is working. 
Rasmussen noted in many accidents how these individual optimisations, which can be observed and 
which he called “migration to the boundary” (MttB), his phrase for coming up against the limits of 
what one can optimise, conflicted either with overall system safety goals, or with each other to 
engender hazardous system states and behaviors. Most ATC-pilot communication is routine, and 
much of it can be expressed by use of much shortened phrases amongst knowledgeable pilots and 
controllers:  elisions and suchlike. And these optimisations, such as elisions, rarely lead to 
miscommunication, lead even more rarely to hazardous situations, and these themselves lead even 
more rarely to accidents. So MttB in formalised communication has immediate and pervasive 
benefits and only occasional, very rare, disadvantages. Which even more occasionally result in 
accidents, sometimes with heavy loss of life. Which of course is why the formalised 
communication, not foreshortened by MttB-derived modifications, is promulgated in the first place.

Cushing suggested a “long-term solution” to the disadvantages derived from the pervasive linguistic 
phenomena which he had enumerated. The solution consisted in a computer-supported “intelligent” 
voice interface for aviation communications, resting on a formal language. He proposed an 
architecture for the system, and use of some computer-supported-linguistic tools, such as LEX and 
BISON, based on a formal grammar of aviation communications. He made extensive use of SW 
available on Apple Macintosh computers, at that time limiting the applicability of the work since 
Apple did not have a large market share of personal computers.

Hilbert and Ellermann showed, however, that the grammar proposed by Cushing was formally 
inadequate for these communications, in that it did not correctly represent them, allowing some 
phrases that were inappropriate, and ruling out other phrases in officially-sanctioned use 
[Ellermann&Hilbert 2001]. They went on to show that accurate pilot-ATC communications could in 
fact be represented by a formally-simpler grammar in extended Backus-Naur form (EBNF), which 
makes it suitable for standard computer-linguistic parsing and analysis tools [Ellermann&Hilbert 
2002]. In this work, Ellermann and Hilbert also implemented a parser for their grammar on a Unix-
based computer system. Unix had a much broader installed base than Apple systems at that time. 
Nowadays, Apple operating systems are also Unix-based. 

Hölz and Hettenhausen designed and partially implemented a limited computer corpus of aviation 
communications for published accidents [Hölz&Hettenhausen 2001]. This task is made particularly 
difficult in that such communications are not publicly available, in part through agreements with 
professional-pilot unions for reasons of privacy and employee protection in the workplace. Indeed, 
such transcripts are not available in most cases even within airlines. They are sometimes made 
available, say by the US National Transportation Safety Board, in the case of significant accidents, 
but other investigative authorities, such as the Transportation Safety Board of Canada, redact 
heavily and summarise, through concerns for the privacy of participants and victims. The chances 
of building a representative corpus are thereby limited. However, Döring, McGovern and Sanders 
[Döring&MacGovern&Sanders 2001] showed using the limited Hölz-Hettenhausen corpus that 
semantic parsing techniques on the corpus enabled unique correlation of spoken phrases in the 
transcripts with their formal Ellermann-Hilbert equivalents in a high proportion, some 80-90%, of 
cases. This work validates Cushing's intuition that computer linguistics can be fruitfully applied to 
improve aspects of day-to-day controller-pilot communications with respect to the unsafe features 
he identified in his compilation of examples.

The question is, however, still unanswered what sort of computer-supported tools would most 
benefit these communications from the point of view of enhancing safety, and which such tools 



stand a reasonable chance of being implemented and successfully introduced into service. Limited 
versions of such communications are already flying, for example the CPDLC communications, 
which are digital-computer-mediated communications whereby the sender uses a keyboard, the 
receiver a screen, with a button for acknowledgement of reception and/or clearance. As of writing, 
CPDLC has been successfully used for communications on trans-oceanic flights for almost two 
decades. 

One possible future development could see verbal statements of agents parsed by computer, 
transmitted digitally as text after checking for compliance, consistency, completeness, and common 
forms of failure, and voice-synthesised at reception. The state of the art is a long way from having 
such proof-of-concept prototypes, and even further from a practically workable system which 
would be accepted by the aviation community. 

Such systems are feasible. We turn now to a domain in which such tools have been successfully 
implemented, the linguistically somewhat more simple domain of train dispatching and train 
announcement procedures.

Train Announcement Procedures (TAP, German: Zugmeldeverfahren) are one of the two procedures 
on German railways for coordinating traffic on single-track lines without signals. The other is train 
dispatching (Zugleitbetrieb, ZLB), for which computer support will be considered, below.

Train Dispatching and Train Announcement Procedures

Train dispatching  and TAP are forms of train control used in German railway operations on 
sparsely-used single-track railway lines without signal support (signals are required by most railway 
authorities on all tracks which have above a certain frequency of train movements). Trains halt at a 
stopping point, usúally a railway station, and negotiate a verbal protocol with a train controller in 
order to proceed to the next stopping point. The region of line between two stopping points is called 
a block, and the protocol must ensure that no two trains may proceed in the same block at the same 
time under central control. It must be possible, for track maintenance, rescue, and shunting purposes 
to allow trains to move at line-of-sight braking speeds under certain circumstances, but a train must 
not be allowed to proceed under normal driving conditions into a block in which some line-of-sight 
operations are taking place, and line-of-sight operations must not be allowed to proceed in a block 
in which a train is proceeding under normal driving conditions. Basically, the two allowable states 
for one block are: one train only, or everyone is being slow and careful and can stop before 
hindrances. 

Train dispatching operates with one train controller, who controls the movements of all trains on a 
specific section of track (a block). A controller using dispatching communicates with train drivers 
using dedicated radio.

TAP is a protocol in which two train controllers, usually the station masters at the stations at each 
end of a block, coordinate the dispatch of trains into the block between themselves first, and then 
communicate permissions with the train drivers. The station masters communicate with each other 
using dedicated telephone lines, and with the train drivers using dedicated radio.

The verbal protocols for train dispatching and TAP are strict, use defined phraseology, and are part 
of German rail law.

The protocols do most often support the operational safety requirements, but mistakes are 
sometimes made. 



Case Study: the Warngau Single-Track Train Collision, 1975

On Sunday 8th June 1975 18:32h, two passenger trains crashed into each other near Warngau, 
Germany. The passenger trains both entered the single-track line between Warngau and Schaftlach 
after receiving permission to continue. One train was lifted off the track and fell to the side. The 
accident killed 44 people, including the two engine drivers, and injured 122. Damage amounted to 
about 4 million Deutsche Mark (about €2 million). Verbal execution of protocols played a 
significant role. 

The single-line track between Warngau and Schaftlach is 4.8 km long. It is part of the line between 
München (Munich) and Lenggries, in Bavaria. Automatic Train Protection, automatic braking on 
passing a signal at danger,  is installed and functions through inductive-electromagnetic trackside 
and on-board equipment (Indusi). Indusi was required for the line because it was designed for trains 
travelling faster than 100 kph. However, traffic density on the line was sufficiently low that 
compartmentalisation into blocks was not required between stations. Thus the track between 
Warngau and Schaftlach constituted one block (German Blockabschnitt) to which access was 
controlled by station masters/controllers (Fahrdienstleiter) in Warngau and in Schaftlach using TAP. 
The block contained one level-crossing (grade crossing), protected by warning signals.

Under TAP, trains must be offered (OFF), accepted (ACC), checked out (PERM) and reported back 
(ACK) between station masters. These procedures are as follows. Suppose a train at holding point 
(here, station) A wishes to progress to holding point/station B.

• OFF: if he does not regard the block as occupied, station master A tells station master B that 
he has a train ready to enter a specific block.

• ACC: station master B confirms that the train can enter (if the block is not already 
occupied), and holds the block as occupied until the train arrives at the B side of the block, 
at his station, and leaves. This arrival event will be assured visually, and verbally by an 
ACK, below.

• PERM: station master A notifies the train driver that the train may enter the block and notes 
the train's time of departure.

• ACK: station inspector B notifies station inspector A that the train has cleared the block. 

The OFF-ACK pair guards against opposite-direction trains colliding head-on, for station master B 
will know if he has already sent a train into the block, and station master A will have marked the 
block as occupied. The OFF-ACK pair guards against same-direction trains colliding head-on-tail. I 
forego a formal analysis of the TAP protocol here; we will see such an analyis below for train 
dispatching.

On the day of the accident train 3591 was waiting at Warngau, ready for departure. Train 3594 S 
(scheduled sundays only) was waiting at Schaftlach, ready for departure. Both station masters 
offered their trains (OFF), and both interpreted the communication for their respective train as if 
they had received ACC. Both cleared their trains to depart.

The apparent misunderstanding was determined to be a result of not using the fixed phrases. It was 
reported that the station masters conversed using a Bavarian dialect and “cut corners” in the 
execution of the protocol. If so, this would then be an example of MttB. Unfortunately, there is no 
transcript of the communications publicly available.

According to the written schedule, train 3591 had to wait for two trains coming from Schaftlach: 
train 3592 and train 3594 S.  The station master at Warngau had to handle three trains in a short 
time (about 9 minutes), and as well as sell tickets and answer passengers' questions. He was the 



only person in the Warngau station.

Other causal factors than miscommunication played a role. For example, a feature of train 
timetabling for opposite-direction trains, “air intersections”, Luftkreuzungen, theoretical positions 
within a block at which trains following a timetable would cross were the block to consist of two 
one-way tracks, was used in the pictorial timetable for these stations for these trains. In fact, the 
EBO regulations explicitly disallowed Luftkreuzung in timetable construction. It was nevertheless 
common practice at this time to use them, to allow station masters some scheduling flexibility in 
case trains were not running on time.

Also, between Warngau and Schaftlach, there were two signals guarding a level crossing (grade 
crossing) for trains. The signal indicator lights start blinking when a train's first axle passes a 
contact point on the track. If a train from the opposite direction passes its respective contact point, 
then the control light does not blink. In this case the train driver must come to a full stop before the 
crossing. Train 3591 passed the contact point first; train 3594 S passed its respective contact point 
after 3591 passed his, but the driver of 3594 S did not react to the lack of blinking signal, which 
should have indicated to him that he should commence an emergency stop. The trains were in a 
blind curving section of track, so visual contact was not possible until late in the convergence. 
Either visual contact or braking of train 3394 S would have reduced the severity of the collision. 
This is not the only case in German railway history in which safety information is conveyed by a 
lack of action, here the lack of operation of the signal light, before shortly later an accident ensued. 
The Brühl derailment accident [Brinkmann&Lemke 2003] is another example. Our concern here is 
not, however, with the analysis of visual communications.

The Warngau collision and the Cali accident have some communication phenomena in common. 
Non-standard phraseology was used, in this case local dialect and ambiguous phrasing – MttB at 
work -  and the result was an inconsistent understanding of overall system state by the participants: 
RCM and MCRP were again violated, obviously.

This raises the question, raised above for aviation communications, whether computer support can 
help secure such operations. In this case, there are working computer-supportive systems for the 
alternative to TAP, train dispatching. Train dispatching without local signal support is supported on 
some Austrian railway lines run by the company Stern & Hafferl, such as the local railway in the 
region around Linz, using a system developed at the University of Applied Sciences at Wels 
(Fachhochschule Wels) by a team led by Burkhard Stadlmann [Stadlmann 2004]. Stadlmann's work 
represents the state of the practice in computer-supported train dispatching, but it holds minimal 
interest from the linguistic point of view, since the system is primarily informational to the agent. 

If that is state of the practice, then what about state of the art?

Computer Support with a Proven-Correct Protocol Implementation

Bernd Sieker has considered the Zugleitbetrieb protocol defined by German railway law for non-
federal railways. There are many such lines run by private railway companies in Germany, but only 
a few, mostly in Sachsen around Dresden, are non-signalled. Most lines, including all those around 
Bielefeld where we work, are supported by signalling systems to some degree.

In his PhD thesis, in German [Sieker 2010], Sieker started from a formal expression in logic of the 
above basic requirement of Zugleitbetrieb, the one-block one-train criterion, with the distinction 
between central control and line-of-sight operations. He proceeded to derive the protocol along the 
lines indicated in the law [FV-NE], by using a technique of computer-system design elaboration 
known as formal refinement. Sieker derived a series of ever-more-elaborate state machines to 



implement the verbal protocol formally using computational techniques, and each state machine 
was formally proven using formal logic to mimic the more abstract state machines higher in the 
development hierarchy. The penultimate step consisted of factoring a state machine representing the 
global system state into different state machines for each agent, in such a manner that it could be 
proven that the interactions of the agent state-machines formed exactly the global state machine 
from which they were derived. 

The final step was implemented by Phil Thornley of SparkSure, who implemented the agent state 
machines in the annotated programming language SPARK [Barnes 2003] and proved formally, 
using the required annotations supplementing the executable code, that the executable computer 
programs implemented exactly and precisely the agent state machines derived by Sieker.

The result is a fully formally analysed SW system, which runs a verbal protocol precisely, and 
which has been formally proved to satisfy the basic safety requirement of Zugleitbetrieb. That 
means that running the SW is guaranteed to execute the protocol logically correctly (Sieker 
discovered during the course of the work that the protocol did not define actions in all reachable 
states. The required actions were mostly obvious, and were added. The protocol which Sieker's 
development runs is strictly speaking a formal completion of the legal protocol). 

Of course, there can still arise hardware problems with the machine, and it may be that the compiler 
which translates the SPARK source code into machine language for the machine is inexact, but 
these are problems which are common to all computer support of any task, are not specific in any 
way to mimicking verbal protocols, and have been addressed by the computer industry. Indeed the 
issue of unreliable compilation has been at the center of work by the developers of SPARK, the 
company Altran-Praxis, for two decades. 

The details of Sieker's work here generally follow an account in [Ladkin&Sieker&Stuphorn 2009]. 
This account focused on the safety properties of the development – for example, the novel approach 
to hazard analysis, derivation of a demonstrably-complete set of safety requirements, and aspects of 
the development that would and would not generalise to other situations – which are of less interest 
to us here.

The highest-level language, called Level 0, required to express the basic safety requirement is 
simple, indeed astonishingly simple. This simplicity allowed a manual selection of safety 
requirements, which is complete in the sense that one can easily show that they cannot be logically 
strengthened.

The next language level, Level 1 and further language levels were defined through the usual type of 
refinement process familiar to computer scientists, in which the extensions of the language were 
carefully controlled in small steps. The entire functional operation of the system at each level could 
be expressed in terms of a global finite-state machine, which state machines were formally proved 
through simple, short propositional-logic arguments to refine each other, sometimes through 
addition of extra requirements, which then were added to the list of safety requirements. 

The final refinement step involved transforming the global state machine into a set of agent state-
machines, one representing a driver and one a train controller, which communicate by means of 
message-passing. The agent state-machines are expressed in a structure called a Message Flow 
Graph (MFG), for which a formal semantics has already been defined [Ladkin&Leue1995]. By this 
means the MFG could be formally proved to implement the global state machine from which it was 
refined. 

The MFG agents were then implemented as SPARK procedure skeletons with the appropriate 



annotations by Phil Thornley of SparkSure, and the annotation proved to implement the MFG. 

The entire development ensured complete traceability between very-high-level safety requirements 
and SPARK source code. Suppose such a system were to be implemented as either an automated 
dispatching system, with computers replacing the human agents, or, more practically, as a support 
system which checks that the required steps have been performed by the human agents. Then the 
risk of using the system resides entirely in the hardware and communications systems used, as well 
as in the compiler used to compile the source code, and in human factors such as whether the 
system is used as intended. Any risk inherent in the logic of the program design itself has been 
eliminated, and shown to be eliminated by the logical proofs. The risk of this computer-based 
system has thereby been reduced to that of other, generic risks, which data from other, unrelated 
computer projects may be used to assess.

The architectural scheme of the development is an example of a method called Ontological Hazard 
Analysis, proposed by myself and developed inter alia by Sieker and Sanders 
[Stuphorn&Sieker&Ladkin 2009, Ladkin&Sanders&Sieker 2012]. The Hazan aspects of the 
development interest us marginally here. The structure of the development is given in the following 
diagram.

Fig. 1 Structure of the OHA

Level 0

The goal of the highest specification level, Level 0, is to provide a description language adequate 
for expressing the intuitive safety requirement of train dispatching, the one-block one-train 
requirement with exceptions, that is so simple that (a) we can define safety axioms to which all 
applications experts can assent, and (b) at the same time ascertain that these axioms are both 
correct and complete relative to the expressions of the language.

Fig. 2. Schematic Representation of Level 0



The Level 0 language is a logical language, which includes sorts of objects, properties of objects in 
those sorts, and relations between objects; a basic predicate-logical language with no complex 
features. Sorts and relations are as follows.

Table 1. Level 0 Sorts

Sort Description
Vehicle Any train or other vehicle operating on tracks
Block A section of a track inside or outside a station

Table 2. Level 0 Relations

Relation Description
inA(F,S) Train F is in Block S
ZV(F,S) ZV(F,S) Train F may occupy Block S under central responsibility (normal  

scheduledoperation)
LV(FS) ZV(F,S) Train F may occupy Block S under local responsibility (special case)

Determining Safety Axioms. Using elementary propositional logic as well some semantic domain 
knowledge, Sieker is able to determine that there turn out to be only 6 safety postulates on Level 0 
from consideration of a couple of dozen non-equivalent statements from a total of 256 statements 
before semantic reduction. We use the following shorthand notation for a train F1 and one block S: 
LV(F1,S) = LV1, ZV(F1,S) = LZ1, inA(F1,S) = in1; similarly for train F2. The Safety Postulates at 
Level 0 are enumerated in Table 3. It is not shown here how the safety postulates were derived, for 
this is not our main concern.

Table 3. Safety Postulates at Level 0

Safety Postulate Description
ZV1 ⇒ ¬LV1 If a train is in a block under central responsibility it cannot be there  

under local responsibility
¬LV1 ∧ in1 ⇒ ZV1 If a train is in a block and is not there under local responsibility  

then it is under central responsibility
in1 ∧ ZV1 ⇒ ¬LV1 If a train is in a block under central responsibility it cannot be in  

that block under local responsibility
(F1≠F2) ⇒ (LV1 ⇒ ¬ZV2) If a train is in a block under local responsibility another train under  

central responsibility cannot be in that block
(F1≠F2) ⇒ (in1 ⇒ ¬ZV2) If a train is in a block another train under central responsibility  

cannot be in that block
(F1≠F2) ⇒ (ZV1⇒¬ZV2) If a train under central responsibility is in a block, another train  

under central responsibility cannot be in that block.

Level 1: The First Refinement Level

Fig. 3. Schematic Representation of Level 1

The generic block of Level 0 is refined by introducing the new sorts Track and Station. No other 
modifications are undertaken, in accordance with the principle of keeping refinement steps simple. 
This results in the sorts in Table 4.



Table 4. Level 1 Sorts

Sort Description
Vehicle Train or other track vehicle
Block A track section
Track A piece of track in the station
Station A station where messages are exchanged

On Level 1, there are then 10 relations, distributing the sorts over the relations. Meaning Postulates 
define what each Level 0 sort and Level 0 relation means in terms of the Level 1 language. Using 
these Meaning Postulates, we arrive at 12 Safety Postulates for Level 1.

Level 2

Fig. 4. Schematic Representation of Level 2

At Level 2, no new sorts are added, but additional relations concerning ‘clearances’ are added, as 
shown in Table 5.

Table 5. Level 2 Relations

Relation Description
FA(F,A,B) Train F, in station A, has asked for clearance to go to station B
FE(F,A,B) Train F, in station A, has received clearance to go to station B
AFE(F,A,B) Train F, in station A, has been denied clearance to go to station B
KH(F,A,B) No obstructions are known for train F to go from station A to station B

At this point, Sieker is now able to build a state-machine representing the global states of clearances 
which represents a train journey. The state-machine is shown in Figure 5, which is presented as a 
Predicate-Action-Diagram [Lamport 1995].

Three simple Meaning Postulates and elementary logic lead to only two new Safety Postulates, 
which can be expressed informally as:

 if no obstructions are known and clearance has been given, the block can be occupied under 
central responsibility

 clearance for a block cannot be given for a second train, if clearance has already been given for a 
train for the same block in either direction.

New hazards identified at this level are simply the negations of the newly-identified Safety 
Postulates:

 Clearance has been given, and no obstruction is known, but the conditions for occupying the 
block under central responsibility have not been met.

 Clearance has been given for two trains for the same block at the same time.



State Description
s0 inZ(T , A)
s1 ∧ inZ(T , A) 

∧ FA(T , A, Next(T , A))
∧ ¬ FE(T , A, Next(T , A)) 

s2 ∧ inZ(T , A)
∧ FA(T , A, Next(T , A))
∧ KH(T , A, Next(T , A))

s3 ∧ inZ(T , A)
∧ FA(T , A, Next(T , A))
∧ ¬ FE(T , A, Next(T , A))
∧ ¬ KH(T , A, Next(T , A))
∧ AFE(T , A, Next(T , A))

s4 ∧ inZ(T , A)
∧ FA(T , A, Next(T , A))
∧ FE(T , A, Next(T , A))
∧ KH(T , A, Next(T , A)

s5 ∧ zw(T , A, Next(T , A))
∧ FE(T , A, Next(T , A))
∧ KH(T , A, Next(T , A))
∧ ¬ LV(T , S)

s6 inZ(T , A) = s0
s7 ∧ btw(T , A, Next(T , A))

∧ FE(T , A, Next(T , A))
∧ ¬ KH(T , A, Next(T , A))
∧ ¬ LV(T , S)

Fig. 5. Level 2 state-machine (a Predicate-Action Diagram)

Level 3

Level 3 includes the specific defined communications between train drivers and a train controller.
Message types correspond to the states in which the trains can be, and are designed according to the 
message types prescribed in the regulations for German non-state-owned railways (VDV 2004).

Table 6. Message types at Level 3

Message Type Description
FA Request for Clearance (Fahranfrage)
FE Clearance (Fahrerlaubnis)
AFE Denial of Clearance (Ablehung der Fahrerlaubnis)
AM Notification of Arrival (Ankunftmeldung)

In addition, we define relations to describe sending and receiving of messages, as shown in Table 7.



Fig. 6. Schematic Representation of Level 3

Table 7. Relations at Level 3

Relation Description
Sent(MT,T,A) Message of type MT, concerning train T and station A has been sent.
Recd(MT,T,A) Message of type MT, concerning train T and station A has been received.

Note that the sender and receiver of the message are implicit. Messages of type FA and AM are 
always sent by the specific train driver to the train controller, messages of type FE and AFE are 
always sent by the train controller.

Through appropriate Meaning Postulates, the state machine of Level 2 can be augmented to include 
communications. This now more complex state machine can be transformed into a Message Flow 
Graph (MFG), to make the communications visually clear. The MFG represents the individual 
agents and their changing states as vertical lines, message passing between agents as angled lines. 
The MFG can be formally shown to define the same global state machine as the Predicate-Action-
Diagram for this level. The MFG is used as the starting point to define the SPARK implementation 
and the SPARK verification conditions are determined by hand to define the MFG of Figure 7.

      Fig. 7. The Message Flow Graph



Table 8. States corresponding to the Message Flow Graph

MFG-
Trans.

Driver-State Controller State Global State

s0 inZ(T , A)A) – inZ(T , A)
s0 → s1 ∧ inZ(T , A)

∧ Sent⟨FA, T , Next(T , A)⟩
-- ∧ inZ(T , A)

∧ Sent⟨FA, T , Next(T , A)⟩
s1 → s2 -- Recd⟨FA, T , Next(T , A)⟩ ∧ inZ(T , A)

∧ Sent⟨FA, T , Next(T , A)⟩
∧Recd⟨FA, T , Next(T , A)⟩

The Step to Code: Implementation in SPARK

SPARK is based on a subset of the Ada language. It uses annotations to denote data and information 
flow and to specify pre- and post-conditions for functions and procedures. The SPARK toolset 
includes a static code analyser which uses the annotations to prove the absence of run-time errors, 
such as division by zero, buffer overflows and other bounds violations, before the code is actually 
compiled.

Typical Example of SPARK annotations corresponding to the MFG
procedure Send_FA (DS : in out Driver_State); 
--# global out Messages.Out_Queues; 
--# derives Messages.Out_Queues from 
--# DS 
--# & DS from 
--# *; 
--# pre D_State(DS) = D_S0; 
--# post To_S1(DS˜, DS);

Fig. 8. The Development-Flow Graph of the SPARK verbal-protocol simulation



Conclusions of the FV-NE Project

This is another case study in which techniques associated with finite-state systems are adequate for 
analysing a verbal safety-critical communications protocol. Through the thorough use of formal-
refinement techniques, it was possible to prove formally in propositional logic that the derived 
system expressed in executable SPARK source code fulfilled the basic system safety requirement 
without exception. One could well imagine a helper computer system, installed on trains and at the 
train controllers' positions, which reiterated the steps of the verbal protocol as executed by the train 
drivers and controllers. This system is guaranteed to execute the protocol unambiguously and 
correctly, and therefore could have helped avoid such an outcome as at Warngau. Furthermore, 
Sieker's work has shown that the verbal protocol is itself logically correct, in that it logically fulfils 
the basic safety requirement.

What is most remarkable about this development in the context of this survey of communication in 
critical systems is how far the technology has come from the tools generally used by computational 
linguists. 

Rigor and Accuracy in Verbal Protocols: General Conclusions

We have considered verbal safety-critical communications in transportation systems, namely air and 
rail travel. This domain forms a small but, it has been argued, clearly delineated subspecialty of 
safety-critical system science at the borders of general and computational linguistics. 

We have seen how techniques from finite-state system science can profitably be used to analyse, as 
well as in the last instance to help execute, the protocols required for these communications in order 
to enhance safety.

Two case studies from air travel have been considered in detail, and some safety issues effectively 
addressed by design principles have been discussed. However, considering work by Cushing as well 
as extensions by Ellermann, Hilbert and others has shown just how far we have to go in this area to 
reach a state-of-the-art computer-supported system which would enhance safety in these critical 
communications by eliminating or mitigating features which have been shown to compromise that 
safety.

The requirements and protocols of train dispatching are much simpler. In this case, helper systems 
are already deployed (state of the practice) in Austria, derived from work of Stadlmann et al. But 
his methods are not based on linguistic analysis, and a state of the art development based on careful 
linguistic analysis has been exhibited by the research work of Sieker, described broadly above.

All these methods, with the possible exception of those of Stadlman, employ mainly finite-state 
system techniques.

It has been remarked how far the system developed by Sieker lies from the typical considerations of 
computational linguistics. One may speculate that, as verbal-protocol systems become more well 
understood, the phenomena of interest to computer linguists will recede into the background, to be 
supplanted by standard techniques of reliable- and safe-SW-system development as known to SW 
safety system engineers. For indeed we should wish to control these phenomena, as Cushing and the 
case studies have shown. It has been suggested that general techniques are emerging with which we 
may profitably continue to go about this task: simple abstract data-structures representing state; 
finite-state-machine techniques; formal refinement; simple formal languages based on the ontology 
of predicate logic (maybe sorted predicate logic); meaning postulates to relate levels of refinement; 



and of course formal proof of properties of simulation.
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