
Software, the Urn Model, and Failure

Peter Bernard Ladkin
Version 3 of 2015-02-25

Abstract: IEC 61508-7:2010 Annex D explicates some features of the statistical evaluation of software through its
operational history. But it raises many questions. One is: how does the traditional urn model apply, if at all, to software?
A second is: to what kinds of software does the reasoning in Annex D apply? A third is: do the confidence-interval
numbers apply to all distributions of inputs? Recently, I have experienced reliability-engineering experts giving wrong
answers to the second and third questions. It seemed worthwhile to explain correct answers in terms understandable also
by non-professionals. This paper attempts to do so.

IEC 61508-7:2010 Annex D includes a brief (and, some would say, obscure) introduction to the
statistics of evaluating the reliability of software. Annex D relies on software execution being
construed as a Bernoulli process, which is a sequence of Bernoulli trials (a “random” operation
resulting in one of two outcomes, traditionally denoted“success” or “failure”, with a certain
probability of “success”) with fixed probabilities of success for each trial [BedCoo01 Chapter 12].
This conception of software reliability has been developed in the software engineering literature for
over forty years, and has had success in assessing the reliability of software for UK nuclear power
plant protection systems using statistical methods [Lit10]. It is the basis for some of the most well-
known literature in the power and pitfalls of assessing software statistically for ultra-high reliability
[LitStr93,LitStr11].

The figures in Annex D Table D.1 are based upon calculations considering software failure as a
Bernoulli process, defined to be a sequence of independent Bernoulli trials with a constant
probability of success per trial [Lit10]. The salient information from Table D.1 is reproduced below
in Tables 1 and 2. They are discussed further in [LadLit15].

Acceptable probability of
failure to perform design
function on demand

Number of observed demands
without failure for a confidence
level of 99%

Number of observed demands
without failure for a confidence
level of 95%

< 10-1 4.6 x 101 3 x 101

< 10-2 4.6 x 102 3 x 102

< 10-3 4.6 x 103 3 x 103

< 10-4 4.6 x 104 3 x 104

Table 1: Example Operational-History Requirements for On-Demand Functions

Acceptable probability of
failure to perform design
function per hour of operation

Number of observed hours of
operation without failure for a
confidence level of 99%

Number of observed hours of
operation without failure for a
confidence level of 95%

< 10-5 4.6 x 105 3 x 105

< 10-6 4.6 x 106 3 x 106

< 10-7 4.6 x 107 3 x 107

< 10-8 4.6 x 108 3 x 108

Table 2: Example Operational-History Requirements for Continuously-Operational Functions

The so-called “urn model” is often used as an example of a Bernoulli process, along with tosses of a
single coin [Fel68]. One reason for this is that the urn model was the basis for Bernoulli’s
considerations on his eponymous process, in his posthumous 1713 manuscript Ars Conjectandi
[Ber1713].

The urn model, Bernoulli trials and Bernoulli processes

Consider an urn containing M balls of two colors, white and black. There are w white balls, and
thus (M-w) black balls. A Bernoulli trial consists of drawing a ball “at random” (that is, without any
evident selection criteria) from the urn, and (correctly) observing the color.

There are two phenomena to be commented here. One is what is meant by a “random” selection.
The second is observing the color.

What is meant by “random” is that each individual ball has an equal likelihood of being selected by
a single trial. Obviously many physical confounding factors could enter in to vitiate this hypothesis,
for example, the urn could be too narrow for all the balls to lie flat, and those nearer the top of the
urn may be more likely to be selected by a lazy selector than those near the bottom. But the
Bernoulli analysis is based upon the hypothesis being true.

We have the following situation:

• each ball has an equal likelihood of being selected;
• such selections are mutually exclusive (if one ball is selected, all others are thereby not

selected),
• there are M balls; and
• it is certain that some one will be selected (likelihood = 1 conventionally),

Suppose we represent likelihoods numerically. It is nowadays generally accepted that the
Kolmogorov axioms pertain [Hac01]. This entails that the likelihood of any one of a finite set of
mutually exclusive events occurring is equal to the sum of the individual likelihoods of those
events. We have M mutually-exclusive events of equal likelihood, of which one must occur. So the
sum of the equal likelihoods is 1. It follows that each individual likelihood is 1/M.

Second, the color must be correctly recorded. Say a blind person performs the trial, and randomly
chooses to report the result as “white” or “black” independently of the true color of the selected
ball. Suppose that, in fact, there are M white balls and no black balls in the urn. The blind reporter
will report, over the long term, equally many “white” selections as “black” selections. Whereas in
fact only white balls have ever been selected. The reports are no guide to the reality of the selection.

A sequence of Bernoulli trials forms a Bernoulli process when each trial is identical in set-up.
Suppose one Bernoulli trial is performed on the urn. Say the result is white. Then there is one white
ball selected, that is, outside the urn. There are (M-1) balls left in the urn, of which (w-1) are white,
and (M-w) are black. Each ball left in the run now has a likelihood 1/(M-1) of being selected in a
second Bernoulli trial. It follows that the two Bernoulli trials do not have the same parameters. The
likelihood of selection of a white ball through a “random” selection is now (w-1)/(M-1), and that of
a black ball is (M-w)/(M-1), which is larger than (M-w)/M. The likelihoods of “random” selection
have changed. The two trials do not form a Bernoulli process.

If the selected ball is replaced in the urn after completion of the Bernoulli trial (and actions are
undertaken, such as stirring the urn, to ensure the likelihood of selection of any ball is again equal
to that of any other), then another Bernoulli trial on the same urn will have identical parameters to

that of the first trial. The two trials will form a Bernoulli process.

The Bernoulli trial for the purposes of executing a Bernoulli process is thus conceived, not solely as
the “random” selection of a ball (selecting a ball in a manner in which selection of any ball is
equally likely), but as “random” selection followed by replacement of the ball in the urn, along with
actions, such as stirring the urn, to restore the likelihoods of selection of each ball.

Amongst other results, it is argued that, long term, the proportion of white balls amongst all balls
selected in the Bernoulli process consisting of unbounded Bernoulli trials on the urn tends to
converge to w/M. (The phrase “tends to converge” needs some explanation!) This is known as
Bernoulli’s Theorem, and is the special case of the Law of Large Numbers for a two-outcome series
of trials. Bernoulli’s Theorem and the urn model is discussed in more depth in [Hac01, Chapter 16,
Stability]. Notice that the results described by Bernoulli’s Theorem concern the true outcomes of
the Bernoulli process, not the reported outcomes from, say, the blind person.

The reported outcomes from the blind person also form a Bernoulli trial, but a different one, to
which the urn is only accidental – a stimulating artefact, one might say. The blind person chooses
“randomly” from the urn to report white/success or black/failure. Such a report is a Bernoulli trial
with M=2 and w = (M-w) = 1, so the process is a Bernoulli process with the same parameters, and
Bernoulli’s Theorem says that in the long term it becomes very likely that the proportion of
reported-white and reported-black outcomes converge to approximately ½ each of the total
outcomes.

The balls in the urn are reported as being selected with equal likelihood. We’ll keep that property of
the trials, but add some additional features. Consider now that the balls, as well as being white or
black, are uniquely numbered with an integer, say with blue numbering. And let’s say consecutively
from 1. If each ball has equal likelihood of being selected in a trial, then we can consider that we
have M “inputs” to the trial, numbered 1 through M, each “input” resulting in success (white) or
failure (black).

The result of the trial is functional upon the selected ball: ball k is white, or ball k is black, and this
remains so throughout the Bernoulli process – there is no repainting of balls. If we regard the ball
numbers as input, and the ball colors as output, this relation is given by the function

Color: {1,2,.....M} " {success, failure}

The scenario envisaged in a Bernoulli trial involves each ball having an equal likelihood of
selection. So each input to Color has an equal likelihood of selection in the trial. We say that inputs
of the function Color are uniformly distributed in the trial and in the process.

Now consider the following scenario. We have now S balls, {b1, b2, bS}and each ball is labelled
in blue with its item number as before (b1 is labelled with a blue “1”, b2 with a blue “2”, and so
on). And let us suppose there are more balls: S > M. Now we add a red number, from 1 to M, which
we call the intermediate number, to each ball. The function

Distr: {1,.....,S} " {1,2,...M}

gives the labelling of each ball: the individual ball number in blue is input to Distr, and the output is
its intermediate number in red. Further , let us assume the ball coloring, white or black, is consistent
with the function Color on the intermediate number, namely,

 Ball bk is white if and only if (Color(Distr(k)) = white

We may perform Bernoulli trials, and thus construct a Bernoulli process, on the urn full of two-
colored-numbered balls just as we may on the original urn with unnumbered balls. But now we
have more that we can record, and we may use the numbers to give us more information about the
process.

Consider the function

D(j) = number of balls with intermediate number j
= | {m : Distr(m) = j} |

The function D is called the distribution of the intermediate numbers in the urn. If each ball has an
equal likelihood of being selected in a Bernoulli trial, then

Intermediate number j has a likelihood of being selected of D(j)/S

because D(j)/S is the proportion of balls with intermediate number j in the urn. Suppose we perform
the Bernoulli process, and record at each trial not only the outcome (“success”, “failure”) but also
the intermediate number. Then we have a Bernoulli process which is consistent with Color, but in
which the intermediate numbers are distributed according to D. We can consider the Bernoulli
process as giving us information about the function from red number to ball color.

Bernoulli’s Theorem holds for any Bernoulli process; in particular it holds for the two-colored-
labelled balls. This means that the long-term selection process tends to select balls with
intermediate numbers approaching the distribution D (again with a caveat concerning the phrase
“tends to”).

Software execution and Bernoulli processes

Suppose we have a computer program P which takes input at various times and returns output. We
assume that P is deterministic, that is, given a specific input i from input-domain I, the program
always returns specific o from output-domain O: Alternatively, there is a mathematical function

FP: I " O

such that P inevitably returns the output value FP(i) when it terminates computing on input i.

Suppose also that there is a specification for P: SP, such that

SP: I " O

We define the satisfaction function of P, SatP: I " {“success”, “failure”}as follows

SatP(i) = “success” if SP(i) = FP(i)
SatP(i) = “failure” if SP(i) # FP(i)

We may define a program trial as follows. P commences execution in initial state Init. P receives
input i, and the trial records SatP(i).

I claim that a program trial can be construed as a Bernoulli trial as follows. Say you have an

unlimited supply of white and black unlabelled balls. For each time the program P is executed,
choose a ball from the supply, label the ball in blue with a number: say, the first unused number in a
register of consecutive numbers; strike the number through as “used” when the ball is labelled.
Then label the ball “i” in red, where i is the input to this execution of P. Finally, ensure the ball is
colored white if SatP(i) = “success”, and black if SatP(i) = “failure”. If the ball is the wrong color,
then pick a new ball of the right color, inscribe it with the same blue and red numbers as the wrong-
color ball, throw the wrong-color ball away, and put the right-color ball in the urn.

After a considerable time, the urn is filled with consecutively-blue-numbered balls. Given ball bk,
the function Distr(k) gives the input to program P on the k’th test, and the color of bk records
whether the execution on input Distr(k) was successful or failed. The distribution of inputs to
program P is given by the function D.

The urn represents the operational history of program P. Suppose a Bernoulli process is now started
on the urn. The salient characteristics of this process are exactly those derivable from the
operational history of program P. Note that the distribution of inputs to the Bernoulli process is
exactly the distribution of inputs to program P in the operational history of program P. The
Bernoulli theorem holds; and chances of any events of interest are given by the usual centuries-old
mathematics.

Practical Considerations

In order to construe P as deterministic, it suffices to ascertain that

• P executes a series of atomic actions with unambiguous semantics; that is, when P executes
an atomic command, the resulting memory state is uniquely specified as a function of the
preconditional memory state in which the atomic command was executed;

• P always commences execution from a defined memory state, the initial state Init.

P thus starts from a defined state, executes a sequence of atomic actions of which, for each action,
the post-state is by hypothesis uniquely determined from the pre-state of the memory in which the
action was executed along with input i.

We may without loss of generality consider the input i to be residing in a specific memory location
at the start of the execution of P.

I believe that these considerations on P may be somewhat relaxed. For example, if P includes a
nondeterministic atomic operation O, then the execution of P may be split into two halves: P1 up to
and including the execution of O; and a number of programs PF1, PF2, following O, each one
computing on one post-execution memory state following O. There will be a distribution of outputs
to O. This distribution will be the activation distribution of PF1, PF2, etc.
Let us assume that O is the only nondeterministic operation in P. Then the output to P on input i will
consist in the distribution of outputs to PF1, PF2, which is exactly the distribution of outputs to O.

These considerations may be generalised to any number of nondeterministic operations in P, but at
risk of combinatorial explosion of the outputs to P. This would render the theoretical considerations
here impractical to ascertain.

Furthermore, taking these nondeterministic operations into account in the way indicated here would
require some decomposition of the operation of the program P in line with the architecture of P.
This is not what is usually considered in “black box” evaluation of software as considered in IEC

61508-7:2010 Annex D.

A significant assumption in the notion of Bernoulli process is that the likelihoods of success or
failure remain constant. This is obviously so for our mathematical construal of program execution.
Crucial is that in each trial the program P starts from the same initial state. If it computed on
memory, part of whose value was retained from previous computations of some sort, there would be
no way of guaranteeing that the Bernoulli-process assumption of constant probability of success
pertained.

It is further important that the success or failure of the program execution is correctly determined.
Consider again the blind recorder. However, in practice failures may be overlooked (for example,
masked, or just simply overlooked). The Bernoulli-process mathematics rests, however, on failure
detection being perfect.

It is important to note that this is just one set of considerations on software, on programs P, that
allow their behavior to be modelled by the urn and thereby as a Bernoulli process. For all I know,
the considerations may be relaxed, maybe considerably, and the urn model thereby more widely
applicable to more types of software.

Comments on a Proposal

In a recent note [Anon15], a reliability expert has claimed that the estimations of failure rate, and
the non-failure statistics required for specified levels of confidence in those rates, included in Table
D.1 of IEC 61508-7:2010 Annex D (and reproduced here as Tables 1 and 2) are valid only for the
uniform distribution of input values.

Consider an arbitrary finite distibution D. Let us construct an urn as above, with red numbers
exhibiting the distribution D. Selection from the urn is uniformly distributed amongst the balls.

Suppose it is legitimate to conclude somehow: after X trials without selecting a black ball, I am
entitled to infer, to a level of confidence Y, that the probability of selecting a black ball is Z. Notice
this is a property of the experiment along with the proportion of balls colored black versus white. It
has nothing to do with blue or red labels.

The balls are uniformly distributed. [Anon15] suggests that the conclusion is legitimate (for
appropriate values of X, Y, and Z). The selection of balls according to their blue labels is uniformly
distributed (considering the mapping blue-labels → {white, black}). But the same experiment also
gives us ball selection according to the distribution D, by paying attention to the red labels, to the
the mapping red-labels → {white, black}. But the conclusion holds irrespective of which mapping I
pay attention to: after X trials without selecting a black ball, I am entitled to infer, to a level of
confidence Y, that the probability of selecting a black ball is Z. Thereby as true for D as for the
uniform distribution.

Notice in particular that this conclusion holds whatever the preferred means of coming to the
conclusion about the probability of selecting a black ball. It is entirely independent of interpretation,
whether classical, frequentist, Bayesian or what-have-you.

Further, [Anon15] suggests that the only software to which the Bernoulli-process intepretation
applies is software which makes no use of internal memory, so-called “stateless” software. Our
considerations above show that the execution of deterministic software from an initial state
constitutes a Bernoulli trial, and thus repeated execution a Bernoulli process. There is no condition
on memory use arising from our construal of a the execution of a deterministic program P forming a

Bernoulli process, contrary to what [Anon15] suggests.

References

[Ber1713] J. Bernoulli, Ars Conjectandi, Basel, 1713.

[Anon15] Anonymous, Determining Software Safety: Understanding the Possibilities and
Limitations of International Safety Standard IEC61508-7 Annex D , preprint presented to DKE AK
914.0.3 on 10 February 2015, dated January 2015.

[Fel68] W. Feller, An Introduction to Probability Theory and its Applications, Volume 1 Third
Edition, John Wiley and Sons, 1968.

[Hac01] I. Hacking, An Introduction to Probability and Inductive Logic, Cambridge University
Press, 2001.

[LadLit15] P.B. Ladkin and B. Littlewood, Practical Statistical Evaulation of Critical Software,
submitted for publication.

[Lit10] B. Littlewood, personal communication, January 2010.

[LS93] B. Littlewood and L. Strigini, Validation of ultra-high-dependability for software-based
systems, Communications of the ACM 36(11):69-80, 1993.

[LS11] B. Littlewood and L. Strigini, “Validation of ultra-high dependability...” - 20 years on,
Safety Systems 20(3):6-10.

