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The completeness question (CQ) is one question with a multitude of ap-
plications. It can be expressed thus:

• Have you thought of everything?

• If yes, how do you know?

Sometimes answers to CQ may be proved formally correct (does your
formal design fulfil its technical requirements specification?), sometimes not
(is your requirements specification adequate?). Common hazard analysis
methods such as HAZOP or FMEA cannot answer CQ. Ontological Analysis,
OA, is a method for developing safety requirements, devised to address CQ
explicitly.

HAZOP was developed by Mond Division of ICI in 1963 and has been
successfully applied in the process industries ever since. HAZOP attempts to
identify systematic safety weaknesses in system design through considering
the potential effects of extreme variation of system parameters beyond the
intent of the design.

In [RCC99], Redmill, Chudleigh and Catmur (hereafter RCC) explain the
application of HAZOP to E/E/PE-based systems. HAZOP, they emphasise,
is a team activity. The HAZOP algorithm consists of the following basic
procedure:

1



1. Select a representation of the system (logical, pictorial, etc)

2. Identify the objects (including subsystems) in the representation

3. Identify the attributes (properties) of those objects

4. Systematically consider the potential effects of extending the values of
those attributes, individually or multiply, beyond design intent

5. Record any safety-related consequences from Step 4

A HAZOP performs this procedure on a variety of representations. RCC
note that Step 1 is a skilled activity relying on engineering experience. They
stress the importance of trying to answer CQ. But how to do so?

In computer science, it is known how to answer CQ relative to certain
criteria. It is now universal in formal specification to use hierarchies of sys-
tem specifications, an idea colleagues trace back to [Par72]. One formally
relates more- and less-detailed specifications in such a hierarchy through a
mathematical notion of refinement.

Formal specification and verification have achieved conspicuous industrial
successes in the telecommunications industry over the last twenty years. In
the mid 1990’s, my group collaborated with Michael Ferguson and Jean-
Charles Gre’goire at the INRS Te’le’communications Lab in Montre’al on a
project to verify a mobile-phone protocol, the Radio Link Protocol RLP1. It
was a common approach in those days to think of invariant properties that
you wanted the communications system to satisfy, and to prove from a formal
description that they were satisfied. To me, this approach suffered from lack
of an answer to CQ.

We chose a different approach. Let me call it Formal Refinement, or FR:

• Write down an abstract, extremely simple description of the system.
Call it UrSpec.

• Refine UrSpec (= Spec0) by adding a little more detail, and continue
refining, obtaining Spec1, Spec2, Spec3, .... It is important that each
refinement be a simple, even trivial, modification of its predecessor. It
is less important how many specifications are generated.
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• Stop refinement when one has reached a specification of the RLP1
algorithm. Call it EndSpec.

• Prove mathematically that Spec(N+1) is a refinement of SpecN, from
UrSpec=Spec0 to EndSpec.

I used the TLA+ formal language and TLA logic [Lam02]. Dirk Henkel
completed the hierarchy of specifications from UrSpec to EndSpec and hand-
constructed the fully formal proofs of refinement in Lamport’s hierarchical
proof notation, over some 100pp [Hen97]. Our INRS colleagues used model-
checking to validate the implementation of RLP1 against a specification in-
formally equivalent to EndSpec.

This approach attempts to reduce the requirements CQ to essentials.
Studies have shown that most unwelcome incidents with mission-critical sys-
tems involve inadequacies in the requirements specification, e.g., [Lut91].
Sometimes these inadequacies can be quite subtle, for example, those in the
TCAS airborne collision-avoidance algorithms exposed by the Überlingen
mid-air collision in 2002 [Lad05]. By producing a very abstract requirements
specification that is close to obviously correct (UrSpec), and refining it to the
system design (EndSpec), formally proving the refinements all the way, any
CQ concerns UrSpec alone, rendering it easier to address.

FR worked well for the telecommunications example. UrSpec described
a FIFO buffer in the simplest possible way:

• two simple data structures: a sequence S, and a set D of elements of
the sequence

• two operations:

– push (append a D-element to S)

– pop (off with S’s head!)

Such specifications are learnt by almost all computer science students in
their first college semester. It helped that reliable, asynchronous message
transmission is aptly described as a FIFO buffer. Other cases may not be
so easy. The buffer describes the behavior of the channel. The channel is
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abstract, and remains so: when you buy such equipment, you don’t buy a
channel, but rather two end pieces of equipment that transmit and receive.
The trick that simplifies the requirement is logical abstraction: it is easy in
logic to reify the very bit that remains abstract through the implementation.
You know this approach works, because you have the refinement proofs. Such
is the power of logic, and formal hierarchy.

I chose TLA+/TLA because I knew they were adequate to the purpose,
having worked with them on other projects [LadLam99]. They are powerful
tools, controlling the details: everything worked without any hand-waving
anywhere. Even hand-proofs remained practical. But they do require exper-
tise and mathematical ability to use fluently; my initiation took a year and
some hand-holding.

I had been thinking how to adapt FR to safety-requirements specification,
to answer CQ. I proposed an orderly method of safety-requirements analysis
in Chapter 9 of [LadCAS01]. I called it Causal System Analysis (CSA):

1. Select a representation R.S of the system S

2. List all - objects - their properties - their relations with each other
that appear in R.S. We call this a formal ontology. These define a
first-order logical language L, which contains names for all the objects,
their properties and their relations, in the usual way.

3. For all accidents and hazard events E of the system S which can be
expressed in L,

(a) perform a formal causal analysis (a Why-Because Analysis, or
WBA) of the occurrence of E

(b) identify countermeasures (to remove, mitigate, or reduce the like-
lihood of occurrence) for E

(c) perform a WBA of the system S’ incorporating those countermea-
sures, to verify the effectiveness of the countermeasures

There is a CQ in CSA, in the phrase ”for all accidents and hazard events
E... which can be expressed in L”. How do we list all such E? We chose
to apply HAZOP to L. So we ”parametrised” CSA, if you like, by HAZOP,
which I write CSA(HAZOP).
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Now I can explain OA in one phrase: Do FR using CSA(HAZOP).

The advantages are:

1. Using FR renders explicit the completeness issues in representation;

2. Using a formal ontology renders explicit the completeness issues in
using HAZOP guide-words;

3. HAZOP is pretty good at what it does.

There is some flexibility in OA:

1. One doesn’t have to use TLA+/TLA in FR, one can use any sufficiently
expressive description technique with a formal notion of refinement.

2. One doesn’t have to use HAZOP in CSA. One can use CSA(FMEA)
or CSA(FMECA) or CSA(Fault Trees) or CSA(whatever).

3. One doesn’t even have to use WBA in CSA, one can use some other
(unworthy :-) notion of causal factor instead.

OA rests, then, on three core beliefs. I believe that requirements com-
pleteness problem can be effectively addressed by using formal hierarchy;
that completeness of the HAZOP guide-word process can be practically ad-
dressed by using formal ontologies; and that effective causal analysis relies
on use of the Counterfactual Test, the core of WBA. If one is doing all that,
I believe one is well on the way to safety-requirements heaven, or at least
well out of purgatory.

I also believe in formal thoroughness. I would insist on an adequately
expressive formal representation with a formal notion of refinement for FR; on
explicit formal ontologies for each refinement step; on using a notion of causal
factor that may be mathematically checked for correctness of its application.
Safety is about things not slipping through your development cracks; informal
notions leave lots of cracks around, and render them unsurveyable.

Most usable formal methods allow an informal application with practical
consumption of resources, and back up the informality with formal criteria
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to allow one to check, should it be necessary, that one’s analysis or devel-
opment is indeed correct. Let us call these ”correctness obligations”. Proof
obligations, such as those generated in the use of SPARK Ada, are exam-
ples of correctness obligations. So are the edges in WB-Graphs constructed
during a WBA, and the collection of in-edges of any nonterminal node in
a WB-Graph. The discharge (proof) of correctness obligations may require
heavy use of resources. Discharging them seems to be less important than
explicitly formulating them in the first place. However, I believe it important
that there is a sound, complete method available for proving the correctness
obligations. OA allows this mixture of informal but methodical discovery
with formal correctness obligations and proof method.

Applications of OA may be found in [Stu05], [Sie05]. There has been
study of formal ontologies for specific industries, using UML class notation:
see e.g., [KB04] and its references. Our industrial collaborators require End-
Spec in UML, so UML ontologies will prove useful in OA.
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