
Professional Opinion on Skills with Formal Description Languages

compiled by Peter Bernard Ladkin and Bernd Sieker
Draft Version 1, 2012-02-25

The document relates a e-mail discussion which recently took place in February 2014 on the System
Safety mailing list, a list of some 200-300 engineers and technicians worldwide with an interest in
system safety, maintained by the Faculty of Technology of the University of Bielefeld, Germany. It
is lightly redacted, and includes only opinions directly relevant to the initial questions as formulated
below. Some observations on the discussion follow the contributions.

The compilers of this document refer to themselves throughout as “author” and “authors”, to avoid
possible confusion with other meanings of “compiler”.

Request

by Peter Bernard Ladkin on 20140215, http://www.systemsafetylist.org/0885.htm

I would like to gather opinions on the necessity of some skills. I would argue that
programming dependable systems, and dependable-software engineering in general,
requires some facility with formal description languages (FDLs). FDLs are necessary for
requirements specification and analysis, and they are also necessary for the refinement steps
that occur between requirements and code, as well as for any kind of static analysis of code.
They are necessary for validating compilers. Classical proposition and predicate logics
count amongst the most common and basic FDLs; a skill in expressing some kinds of
assertions in predicate logic has often been regarded as necessary for a basic informatics
education. I would think some understanding of how FDLs work is essential for any work in
dependable engineering of SW. Do people agree? If so, could you please give me some
evidence?

Selected Responses

Nick Tudor, Aeronautique Associates, [private communication]
http://aeronautique-associates.com/aeronautique_about_us.htm
Nick has worked for the Royal Air Force and Qinetiq and is a member of the RTCA DO178
committee Subgroup 6 (Formal Methods).

The use of logic, discrete maths, upon which is built formal methods, for the development of
digital systems and software is entirelylogical. I think it highly important that logic
is taught to undergrads and that it should be compulsory. The reason we have systems and
software that continually fail to live up to expectations of customers can at least in part be
attributed to poor software engineering practice let alone poor programming.

John Knight, Professor of Computer Science at the University of Virginia, is author of the book
Fundamentals of Dependable Computing for Software Engineers (C&H/CRC 2012).
http://www.cs.virginia.edu/~jck/ http://www.systemsafetylist.org/0887.htm

.... I teach the discrete mathematics course to second-year students at the University of
Virginia. The course is required for computer science and computer engineering majors.

In my opinion, the situation is as follows:
• To a very large extent, all software is critical in some way. Even gaming software,

http://www.systemsafetylist.org/0885.htm
http://www.systemsafetylist.org/0887.htm
http://www.cs.virginia.edu/~jck/
http://aeronautique-associates.com/aeronautique_about_us.htm

the failure of which could lead to loss of reputation, market, income, etc.
• All of engineering rests to some extent on mathematics.
• Discrete mathematics (the term I would use where you have used logic) is the

mathematics of computer engineering.
• We will not make progress against the serious assurance challenges we face unless

we apply mathematics.
• All computer engineers should be trained to understand, appreciate and apply

discrete mathematics.
How does one integrate discrete mathematics into the undergraduate curricula? Here is the
way I do it:

• I define a problem that the students can easily understand first, and then I show how
some aspect of discrete mathematics can solve it.

• A major problem I use is specification. I use specification to motivate sets,
propositions, predicates, relations, functions, etc. For each topic I state bits of
specification as examples.

• I bring all this together by introducing a declarative language based on discrete
mathematics, Z, and show the students both how easy and how effective such
languages are.

• At various points I note that such formal techniques will help the students make
money (because formal techniques are valuable) and help keep them out of court
(because formal techniques are the state of the art).

.................
I am talking about software products that are part of engineered computer systems which
will subject others (possibly the general public) to risk. Higher education has a
responsibility to prepare professional engineers to perform that engineering. That
education needs to make it clear that:

• Engineers are responsible for what they do.
• Engineering is a profession not some amateur activity.
• Mathematics is an essential component of professional computer engineering.

In response to the comment from Les Chambers:
"We must find a way to bring formal methods out of the lab and into general use."
I generally agree. But I note that we have industrial strength systems such as SPARK Ada,
industrial scope use of such systems such as the NATS iFACTS system, and substantial
evidence from Peter Amey and his colleagues that applying such technology is cheaper and
better than the informal alternatives.

Steve Tockey, industrial software developer at Construx http://www.systemsafetylist.org/0890.htm
and http://www.systemsafetylist.org/0900.htm :

First, include me in the camp with PBL and Dr. Knight: formality in software is critical,
even if the application being developed isn't. As a "software professional" for over 37 year
I'm constantly amazed at how informal 99% of the software development community is and
their utter blindness to how much trouble that very informality leads to. I often say, "We are
an industry of highly paid amateurs".

In my experience, not only is it possible to take a more formal approach to software
development, it's at least an order of magnitude easier if we do.

http://www.systemsafetylist.org/0900.htm
http://www.systemsafetylist.org/0890.htm

Second, from a practical perspective most developers--me included--tend to have a hard
time with all of the "upside-down As and the backwards Es" usually associated with truly
formal approaches like Z, VDM, Larch, etc. There's a very interesting and relevant paper,
IMHO:

Jeannette M. Wing, A Specifier's Introduction to Formal Methods, Computer, September
1990

To me at least, the gist of Wing's paper is that I should be able to use a comfortable surface
notation, such as UML Statecharts and Class Diagrams as long as I have a clear mapping
to a defined, formal underpinning (such as could be expressed in Z, VDM, etc.). I don't want
to deal with upside-down As and backwards Es, and neither does my customer. But if I can
have a formally define-able *single* interpretation of something like a UML Statechart then
I get the all of the benefits the underlying formality provides together with the comfort,
familiarity, and ease-of-use of something like a Statechart.

While we're on the topic of Statecharts, I would also like to toss out this fascinating (to me,
anyway) paper:

M. von der Beek. A Comparision of Statechart Variants. In W.-P. de Roever, H. Langmaack
and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems,
number 863 in Lecture Notes in Computer Science, pages 128148. Springer Verlag,
September 1994.

If I remember correctly the author describes about 17 significantly different valid
interpretations of themsemantics of Statecharts. In other words, von der Beek shows how the
same Statechart has the potential to have as many as 17 different valid interpretations. Each
interpretation would lead to a developer producing very different (behaviorally) code as an
implementation of their specific interpretation--which is probably different than the
interpretation intended by the creator of the Statechart. Talk about safety
implications...

So while a lot of people are comfortable using simple modeling notations like Statecharts
and Class Diagrams, to be really useful those diagrams have to be backed up by a single
interpretation as defined by some underlying formal semantic. It doesn't necessarily have to
be the same interpretation used by everyone else, but everyone here has to know—and
agree--which single interpretation is in use.

This is how I interpret PBL's use of the term "FDL" in his original posting, some
convenient-to-use surface notation that's backed up by a single, solid, formally defined
interpretation.

Third, while "model-based development" may be a newish buzzword to a lot of people, some
of us practitioners have actually been doing it for almost 30 years. And getting tremendous
benefit out of doing it, too, I might add. For the life of me I simply can't understand why
more software development isn't done that way. The majority of the problems commonly
encountered on typical software projects simply goes away with model-based development.
I'm in the process of putting together a position paper explaining what "model-based
development" means to me and why I think it's vitally important for the software industry to
move in that direction as quickly as possible. I'll be happy to share a draft of that paper with

anyone who wants, just send me an e-mail asking for the "What is Code?" paper and I'll
give you the draft when it's polished enough to share. I should have it share-able within a
couple of days.

Finally, getting back to PBL's questions:

"I would think some understanding of how FDLs work is essential for any work in
dependable engineering of SW. Do people agree? If so, could you please give me some
evidence?"--I agree 100%. Evidence? My position paper on model-based development, von
der Beek's paper on variability in Statechart semantics, and Wing's paper. I also have at
least two case-study write ups where use of (well, at least semi-formal) FDLs made a
huge difference in the project's outcome.

(paraphrased) "What specific formal logic needs to be taught?"--I'm not sure yet of the
specifics. But I am sure that it has to be enough to provide the formal foundation for the
modeling notations we find useful in software projects. I can tell you what modeling
notations/methods I find useful, we can work together to figure out what underlying formal
foundations would be needed.

[Further contribution]

.........a new version of the "Guide to the Software Engineering Body of Knowledge" (aka
"SWEBOK Guide", in this case SWEBOK Guide V3) has recently been released by the IEEE
Computer Society. You can get your own PDF copy by going to http://www.swebok.org and
then clicking on the "PDF (free)" link under "Get the SWEBOK Guide". This new version is
a significant update from the previous 2003 version. Among other things, several new
"Knowledge Areas" have been added.

A quick survey shows the following sections talking about formal methods of one sort or
another:
Chapter 1: Software Requirements
 Section 1.4.5: Formal Analysis
 Possibly Section 1.6.3: Model Validation

Chapter 9: Software Engineering Models and Methods
 Section 9.1.4: Preconditions, postconditions, and invariants
 Possibly Section 9.3: Analysis of models
 Section 9.4.2: Formal Methods

Chapter 14: Mathematical Foundations

So my point is that the SWEBOK Guide people have at least recognized the need for
formality in professional software development. Hopefully, as industry and academia adopt
SWEBOK Guide as a description/definition of "what software engineering is" then there will
necessarily be an increased emphasis on formality.

Les Chambers, system safety and software safety contractor,
http://www.systemsafetylist.org/0892.htm :

I am in furious agreement with Steve Tockey. If we are to deal effectivelywith the large code
bodies that are now the norm. We must find a way to bring formal methods out of the lab

http://www.systemsafetylist.org/0892.htm
http://www.swebok.org/

and into general use. The primary reason for this is that the larger a code body becomes the
less likely it is that anyone but the author will ever review the code. Ask your formal
methods detractors, "do you really want to sit on an aircraft with avionics software that has
been eyeballed by only one person - the author?" I have done enough test work to be fully
conversant with the ugliness that some programmers are capable of. Believe me, you do not
want to be anywhere near a life critical software intensive system infused by same. Of
course I am assuming here that formal methods support automated static and possibly
dynamic code review. Am I correct? I know from personal experience that manual review of
very complex designs and code is substantially simplified by semiformal methods such as
state machines.

The mission of any engineering discipline is to reduce science to practice to solve real world
problems. Unfortunately the profession seems to be stuck at semiformal methods. The
current impediment is money; finding investors who want to pay for the software engineer to
formally specify program before it's written. On one missile program I worked on it was
hard enough to get the cash to keep the mission function flow diagrams up-to-date, let alone
specify anything with formal methods. Simplification and maybe tool support is the solution.
I hope that's possible - over to you. If we could abstract this problem in terms of human
commercial behaviour, industry experience with state engines is a good case study. Vendors
of programmable logic controllers took a commercial decision to emulate relay racks
described by ladder diagrams when they first released their products. This allowed existing
electricians to use the new tools with minimal training. They could have followed the other
option of logical decomposition of all control problems into cooperating state engines. That
would have required retraining of the entire cohort of electrical tradesmen and, as such,
would probably have been commercial suicide. Of late, some products do support the state
engine concept though the last one I came across was a really ugly implementation.

In the period 1975 to 1985 I worked in an environment where all control systems were
implemented with cooperating state engines. We simplified the concept so plant operators
could easily understand what was going on. We never did use the word State. We used step.
We didn't use the phrase state engine. We used the term sequence control unit. Operators
understood that. That's how operator manuals were organised. After a few years we even
had operators - with no high school education, who had run a state based machinery and
learnt the concepts by doing - writing control programs. Is this possible with formal
methods? This is a righteous question that I would like to see answered by the enormous
cohort of brainpower corralled in the world's universities. A solution would be hugely
beneficial to the industry at large. My humble suggestion for a starting point is to start with
something that programmers know and move on from there. I am passionate about this
subject because, in a previous life, I was the poor electrician responsible for figuring out
how a room full of relay racks was controlling a high-speed lift (elevator). The massive
complexity of these control systems required 2 to 3 years practical experience before you
became useful. It was a craft with high priests who "had the knowledge" and walked on
water. Much like current practitioners of formal methods. That does not have to be. State
engines simplify. State engines support analysis of design. I hope the same will be true one
day for upsidedown As and backward Es. In the meantime, the joint ACM, IEEE task force ,
who recently released their latest curriculum guidelines for undergraduate degree
programmes in computer science are very supportive of teaching formal methods in their
software engineering modules. See:
http://www.acm.org/education/CS2013-final-report.pdf

Bertrand Ricque, Program Manager at Sagem, Chair of the French standardisation committee for

http://www.acm.org/education/CS2013-final-report.pdf

functional safety, member of the IEC Maintenance Team for the software parts of IEC 61508,
http://www.systemsafetylist.org/0893.htm :

My vision is (as usual) even more pessimistic. What you write is not pertinent only for
computer sciences but also for system engineering. We have guys here coming from top
ranking engineering school who would never pass your logic test.

I am currently involved in a relatively critical system design. It happens that most engineers
don't understand that some kind of logical reasoning is necessary to switch from a given
specification to a more refined one. It seems incredible to them that a refined specification
(call it model) would not end automatically in something satisfying the higher level
requirements. I have to use very specific, primary school level, analogies to have them
discover the point ! And this is at Master + 2 years level.

(In response to John Knight):

“Engineers are responsible for what they do.” (JK)

This depends on the countries and their local engineering cultures and legal system. In
France engineers are not personally responsible. The boss of the company is responsible.
Engineer is not a regulated position such as dentist or lawyer …

Michael Tempest, critical-software developer, http://www.systemsafetylist.org/0894.htm :

I observed two patterns over the 15-odd years that I worked for an airborne military
systems house (where I wrote mostly 178B level C"commercial software", since the general
practice was to design systems where software could not contribute to hazards):

1) The programmers with an electronics engineering background found it very difficult to
express an argument (for example, why it is okay to violate *this* coding standard rule
here) and even more difficult to review an argument. I fall into this category and I
learned to do it badly (by the standards of this list).

2) The programmers with a computer science or computer engineering background
generally understood formal methods and were often enthusiastic about them, yet were not
able to apply them cost-effectively. Curiously (to me), they were not much better at
expressing arguments. They did do slightly better at reviewing arguments.

Philip Koopman, Professor of Computer Science, Carnegie-Mellon University, embedded-system
specialist, http://www.systemsafetylist.org/0898.htm :

I'm all for software that actually works going into products via whatever approaches are
effective (mathematics, peer reviews, etc. -- they can all play an important role). While I
haven't spent a lot of time trying to get formal methods adopted, I have spent a lot of time
trying to get organizations to do peer reviews/inspections as a baby step toward crawling
out of the muck of chaotic software development practices.

What I've found is that they often just can't bring themselves to put emphasis on an activity
that is not directly contributing to the specify=>implement=>test path. (Sometimes they

http://www.systemsafetylist.org/0898.htm
http://www.systemsafetylist.org/0894.htm
http://www.systemsafetylist.org/0893.htm

even skip "specify" so they can get right down to the business of writing buggy code, but
that's another story.) I can speculate that the higher level managers assign value to creating
code and testing activities. They assign essentially no value to defect prevention. These
higher level managers seldom have training in software engineering (or even computer
science/engineering).

From what I've seen our students act the same way. It is all about getting the code written,
"tested," and slipped past the grading gatekeeper, however messy that process is. Essentially
no thought or value is placed on avoiding defects in the first place. This approach appears
to have been trained into them in intro programming courses.

I run a senior/MS course that pushes students through a project that is difficult to survive
unless you practice bug prevention. Most of them get the message and are running effective
peer reviews by the end of the course. I fancy that by the time they've completed the course
and learned the lessons, they'd be ready to adopt more formal practices (but not before --
they are skeptical even of peer reviews for several weeks). I touch briefly on formal
methods, but the math is more than I can squeeze into my course on top of everything else I
need to cover. Perhaps if this sort of experience happened early in their education instead
of at the end it would help motivate them to learn and practice the right mathematical skills,
and they'd be eager to take a course on that topic.

But to effect change, IMHO first we have to convince our non-software-engineering/non-
safety critical colleagues that this is something worth doing. I've never had much success
doing that. Part of it is probably that as researchers we mostly specialize in throw-away
non-critical code. It's tough to convince someone that teaching a topic is important if
they've never found it important themselves.

A software-based critical-systems engineer with a large European engineering company (private
communication to an author):

Within [my company], most direct use of Informatics in System Design is linked either to
SCADE [the development environment from Esterel Technologies which uses the
specification language Lustre] or to Statecharts (in some form or other). Therefore I would
agree with Steve Tockey's assessment.

Application of MBSE (including at least somewhat formal specification) started in [my
company] systematically in the late '80's and 1990's and in the domain, [in which] I
work, started in [R&D] in early '90's and properly for [product] specification in 2001.
The specification relates to the design phase before going into [SW development], and
the application of [the applicable standard]......

In we still only do formal proof in the odd [R&D] project, but do rely on people's ability
to properly interpret Statecharts. This can include some quite involved logic in the transition
expressions, and sometimes includes non-trivial issues of Statechart-to-Statechart
communication.

Our suppliers use UML, we tend to use Simulink block decomposition, which means that the
system engineers also need to understand the way a block diagram manages signal
dependency. Unfortunately, the message-based communication semantics of UML are rather
different from this, and it does cause confusion. I'm often a little disappointed with people's
understanding of these issues even when dealing with engineers with 30 years' experience.

For what it's worth, my education (Computer Science, preceded by a part-completed degree
in electrical engineering) covered logic (by example through Prolog), Boolean logic (with
Karnaugh maps etc.) included as part of Maths module 2, although in my case, this was a
repeat of what we had covered in digital electronics) and Functional Programming (using
Haskell or an earlier language Miranda). Only the Functional Programming bit was
elective.

My personal opinion is that Statecharts should be covered as a compulsory part of almost
any Informatics course. They are as useful for GUI design as they are for embedded logic. It
would be lovely to get students to the point where they could use some kind of proof tool to
check properties of 2 or more communicating statecharts. Obviously, you can't do
Statecharts without understanding basic set theory and some amount of temporal logic.

On a related topic, I am appalled by the inability of most programmers to understand
concurrency, the use of semaphores and other mutual exclusion mechanisms, etc. I wasn't
taught this at university either. I had to learn the hard way in my first job. I still have a stack
of papers on all sorts, including Rate-Monotonic analysis, that took me so much effort to
collect and learn, I won't discard them! This is even more important now that most CPU's
are multi-core.

Martyn Thomas, founder of Praxis (now Altran), a pioneer in the use of FDL and unambiguous
semantics of programs with the SPARK toolset, editor with Prof. Daniel Jackson and Lynette
Millett of the US National Academy of Engineering study Software for Dependable Systems:
Sufficient Evidence? (NAP, 2007) http://www.nap.edu/catalog.php?record_id=11923 ,
http://www.systemsafetylist.org/0908.htm :

It's good to see the late, great Peter Amey's name appear in this thread. Here are some of
his papers:

http://www.macs.hw.ac.uk/~air/rmse/c_by_c_better_cheaper.pdf
http://www.altran.co.uk/fileadmin/medias/0.commons/documents/Whitepapers/Logic_versus
_magic.pdf
http://www.macs.hw.ac.uk/~air/rmse/Industrial_strength.pdf
http://www.bowdoin.edu/~allen/courses/cs260/readings/amey.pdf

The Tokeneer project for the NSA is also essential evidence:

http://www.adacore.com/sparkpro/tokeneer

Dewi Daniels, Founder, Verocel and associate of Aeronautique Associates, assessor of the C130J
software for conformance to UK MoD SW standards, http://www.systemsafetylist.org/0914.htm :

I graduated with a degree in Computing Science from Imperial College, London in 1981. I
don't think I could have wished for a better foundation for my career in computing. The
teaching emphasised general principles that have stood me in good stead throughout my
career instead of specific technologies (which have long since been rendered obsolete -- we
used IBM 029 card punches in my first year).

Yes, we were taught logic, computing theory and formal methods. I remember being taught
set theory, predicate logic, Turing machines, the theory of algorithms, logic programming

http://www.systemsafetylist.org/0914.htm
http://www.adacore.com/sparkpro/tokeneer
http://www.bowdoin.edu/~allen/courses/cs260/readings/amey.pdf
http://www.macs.hw.ac.uk/~air/rmse/Industrial_strength.pdf
http://www.altran.co.uk/fileadmin/medias/0.commons/documents/Whitepapers/Logic_versus_magic.pdf
http://www.altran.co.uk/fileadmin/medias/0.commons/documents/Whitepapers/Logic_versus_magic.pdf
http://www.macs.hw.ac.uk/~air/rmse/c_by_c_better_cheaper.pdf
http://www.systemsafetylist.org/0908.htm
http://www.nap.edu/catalog.php?record_id=11923

(Imperial was big on Prolog in those days) and program proof (the text book used was
Dijkstra's seminal "A Discipline of Programming"). I was delighted to be able to put these
skills into practice when I joined Program Validation Limited in 1990 to conduct program
proof of a family of Full Authority Digital Engine Controllers and to help develop the
SPARK Examiner. While I agree with other posters that formal methods deserve much wider
application, the main point I want to make is that I have found my education in formal
methods to be invaluable even on projects that make no use of formal methods. Throughout
my career, I have been surprised by the exceedingly poor quality of requirements produced
by many organisations. In particular, I have come across many very smart and experienced
programmers who seem totally unable to write detailed and precise requirements without
resorting to writing pseudo-code. I believe that my experience of writing pre- and post-
conditions has greatly improved my ability to write clear and concise English-language
requirements that do not constrain the implementation. Furthermore, I believe the main
benefit of
my undergraduate education was the ability to approach problem-solving in an analytical
and methodical manner and to express my ideas clearly and concisely, which are skills that I
believe would have benefited me greatly in any career I had chosen to follow.

The course at Imperial also emphasised the principles of good software design and the
importance of abstraction. I owe a great debt to my programming tutor, Iain Stinson, whose
ideas on software design have influenced me throughout my career. He taught the principles
expounded by Dijkstra, Wirth and Parnas. I find the main difference between average
programmers and great programmers (not that I consider myself one of the latter) is the
latter's ability to find the right abstraction, eliminating unnecessary complexity. The best
programs look so simple that they give the misleading impression of looking as if they were
easy to write.

The course at Imperial was very much a software engineering course rather than a
computer science course. Imperial was rather unusual at that time in teaching project
management as part of the undergraduate curriculum. The teaching included practical
programming projects where we were given the opportunity to lead a project team. The
main textbook used was Brooks' "The Mythical Man-month". I'm quite depressed how many
managers still think you just divide effort by team size to get project duration.

Unfortunately, statistics was taught at Imperial by the mathematics department, whose
lecturers considered us mere engineers to be inferior to their mathematics students, and who
had an excessively theoretical approach to the subject. Fortunately, I had studied 'A' level
statistics at grammar school under an excellent teacher called Mr Roberts, who instilled in
me an understanding of both the power and the limitations of statistical methods. I am
always amazed by the way that statistics are misused by people who should know better.

The tutors at Imperial were right to emphasise general principles over specific technologies.
We were taught to program in Pascal (mostly), Fortran, Cobol and Simula 67, none of
which are in common use today, yet the principles I was taught are as valid today as they
were in 1981.

Derek M. Jones, a software developer, http://www.systemsafetylist.org/0920.htm :

Formal logic is all well and good for small systems but it does not scale. I think you should
explain this important issue to your students.

http://www.systemsafetylist.org/0920.htm

A mathematicians point of view: "Highly complex proofs and implications of such proofs"
http://rsta.royalsocietypublishing.org/content/363/1835/2401

The practical usefulness of formal logic for anything but the smallest problem is wildly
overblown in computer science and I continue to be amazed by the claims made by the
proponents of this approach:
http://shape-of-code.coding-guidelines.com/2013/03/10/verified-compilers-and-soap-
powder-advertising/

Thomas replied to Jones, http://www.systemsafetylist.org/0926.htm :

I have seen mathematically formal methods used successfully on industrial projects
involving more than a hundred engineers and thousands of person-days of effort. I have
seen formal proofs carried out on safety-critical metro systems by industrial engineers at
Siemens Transportation and on the message choreographies for electronic commerce
systems by software engineers at SAP.

In my opinion, the larger and more complex a system is, the more it requires the use of
abstraction to master the complexity; abstraction without formal logic is just arm-waving.

Jones replied, http://www.systemsafetylist.org/0928.htm :

It is also arm-waving to say that formal methods will scale to large (i.e., more than a few
hundred lines) systems.

Thomas suggested that Jones defines what he considers to be “large scale” and then try to find an
example of “large-scale use” of formal methods which fits the definition
http://www.systemsafetylist.org/0930.htm .

Daniels addressed the above comment of Jones directly, http://www.systemsafetylist.org/0934.htm :

I am astonished by this statement. I was personally involved in the program proof of several
thousand lines of code in the early 1990s, including the Full Authority Digital Engine
Controller for the Rolls-Royce RB 211-535. Since then, there have been many much larger
applications of formal methods, including SHOLIS, Tokeneer and iFACTS. Furthermore,
there has been a noticeable reduction in the number of Blue Screens Of Death in Microsoft
Windows in the large decade; I understand this has, to a large extent, been achieved by the
adoption by Microsoft of a tool based on formal methods to detect defects in third-party
device drivers (see e.g.
http://research.microsoft.com/pubs/70038/tr-2004-08.pdf). I find your suggestion that
formal methods have not been used on programs of more than a few hundred lines to be very
surprising.

Jones's final assessment is, http://www.systemsafetylist.org/0936.htm :

I think a cost/benefit analysis of formal methods could well come out in favor of their use for
very critical code, such as the software controlling the safety rods in a nuclear power plant.

[In response to Thomas's query as to what he considers constitutes “large-scale”]

It is possible to write large quantities of 'code' in some formal method language. The ISO

http://www.systemsafetylist.org/0936.htm
http://research.microsoft.com/pubs/70038/tr-2004-08.pdf
http://www.systemsafetylist.org/0934.htm
http://www.systemsafetylist.org/0930.htm
http://www.systemsafetylist.org/0928.htm
http://www.systemsafetylist.org/0926.htm
http://shape-of-code.coding-guidelines.com/2013/03/10/verified-compilers-and-soap-powder-advertising/
http://shape-of-code.coding-guidelines.com/2013/03/10/verified-compilers-and-soap-powder-advertising/
http://rsta.royalsocietypublishing.org/content/363/1835/2401

Modula-2 Standard is 600+ pages long and almost all formal notation. But as far as I know
the only 'formal' tool they used involved the layout of the text.

If you define formal methods as writing the formal 'code' and proving something useful with
it, then...........

..............

I don't have any references to cost vs length of formal proofs; compute resources (i.e., time)
vs length of formal proof is also another issue for which data is very sparse and vague.

I know of cases where a few hundred lines have been analysed using formal methods to a
degree that looks very solid.

Thousands of lines? The NICTA workis in this ball park, but they assumed to much and
I was not convinced.

The analysis of the Viper processor springs to mind as an example of something non-trivial.
I know there was lots of debate about that worked had actually proved and what constitutes
correctness......

I know of projects that started off using formal methods and found them too expensive for
the benefits provided and also found they made it difficult to substantially change the
software later (because the need to redo the formal side would have been prohibitive).

So my view is that formal methods may scale to a few thousand lines, provided the code is
not likely to substantially evolve over time (or the money is available for major reworking
of the formal side).

The Viper processor-verification effort mentioned by Jones, and the accompanying controversy, is
described in Donald MacKenzie, Mechanising Proofs: Computing, Risk and Trust, MIT Press,
2001.

Heath Raftery notes, http://www.systemsafetylist.org/0940.htm :

The first paragraph in the Introduction of [the Microsoft paper referenced by Dewi Daniels]
is particularly telling:

"[Originally] the ultimate goal of formal methods [...] was to [...] rigorously prove
programs fully correct. While this goal remains largely unrealized, many researchers now
focus on the less ambitious but still important goal of stating partial specifications of
program behavior."

I hope I'm not misrepresenting Derek's argument, but it seems to me this is the core issue.
Derek claims that using formal methods on a small slice of a larger project does not
constitute an example of formal methods scaling to a large project. I'm inclined to agree
with Derek's contention that formal methods scale very poorly to large projects, and this
paragraph from the paper backs that up.

I however, still remain hopeful, and look forward to reading more examples of large scale
use of formal methods.

http://www.systemsafetylist.org/0940.htm

Martyn Thomas suggests this misses the point, http://www.systemsafetylist.org/0941.htm :

.... Mostly, what you want to be able to do is to assure particular properties of programs. It's
rarely enough to show that the program fully and correctly implements a functional
specification, as this leaves open all sorts of safety and security vulnerabilities if (for
example) the program encounters input outside the specified range. (If you disagree with
this statement, please send me a functional specification for a real application that is
sufficiently complete and unambiguous to exclude such issues).

The tools that microsoft use to model-check the behaviour of device drivers have made a
great difference to the reliability of Windows. I don't think this could have been achieved any
other way - years of human reviewing and testing had proved inadequate to the task.

So let me turn the point round. What would consititute "large-scale use of formal methods"?
and why is the putative lack of such examples important? Are the "formal methods deniers"
really only building systems for which the smaller scale use of formality would not bring the
sort of benefits that Microsoft, Siemens, Airbus, Boeing, Lockheed Martin and Praxis have
experienced?

Michael J. Pont, a former academic who has founded a critical-embedded-systems company,
SafeTTy Systems, says http://www.systemsafetylist.org/0949.htm :

My present organisation is usually contacted by companies when they are having difficulty
meeting safety / reliability requirements and / or when they are about to develop a product
in compliance with IEC 61508, ISO 26262, DO-178, etc (perhaps for the first time). The
companies that I deal with produce systems ranging from aerospace systems to household
appliances.

In many cases (probably the majority of cases that I see), there is limited evidence of
"process" or documentation available from the "embedded team" when I arrive at the
company door. Requirements documents are often *very* basic, if they exist at all. In many
cases, this situation is inevitable because the teams are very small (even in large
organisations), and the people involved have far too much to do. Sometimes the main
contribution that I can make is to provide a fresh take on the problems, an extra pair of
hands - and support for a case to "the management" for additional resources.

My point with all of this is that - even if they were able to recruit some smart new graduates
with lots of experience in formal methods - this would be unlikely to help the majority of the
organisations that I see. Before these organisations are going to be in a position to make
use of formal techniques, they need some more basic foundations (detailed requirements
documents, linked design documents, code reviews, documented test procedures linked to
requirements, etc).

[I accept that it can be argued that appropriate formal methods may help with all of the
above issues, but - in my view - most of the organisations that I see aren't yet (anywhere
near) ready to go this far.]

It may - of course - be that the organisations I have closest contact with are atypical: they
are, after all, a self-selecting group. However, while I'm sure that there are many
organisations that have mature processes in place for the development of real-time
embedded systems, I'm equally sure that this isn't the norm.

http://www.systemsafetylist.org/0949.htm
http://www.systemsafetylist.org/0941.htm

If we assume - for the moment - that my model is correct, how do we ensure that the
situation is different in 10 years time?

If we want to "change the embedded world" through the teaching that we are providing in
universities, then I think we need to start by covering what I would see as *core* software
engineering skills for the sector that I work in (understanding system hazards, recording
requirements, use of appropriate software architectures, use of coding guidelines, code
reviews, testing vs. verification, etc). On top of this, we can add formal methods - but I think
we need what I would see as the core skills first.

Nick Lusty, a safety-critical systems engineer, supports Pont's observation that the requirements
documentation in projects that founder is often inadequate,
http://www.systemsafetylist.org/0950.htm :

Sad to say, this is a situation that I see time and time again, and it inevitably leads to
problems in validating safety critical systems. Verification of the code to low level design
through low level module testing providing MC/DC coverage is easy, but demonstrating that
the system validly accurately meets the unformed user requirements is much harder. Using
formal methods to create the requirements is one way of addressing this, as it leaves fewer
corners for ambiguities to hide. Z was used extensively for iFACTS, and on a couple of
other projects I have worked on have used a variety of logic tables to specify requirements
where possible.

David Mentré noted, http://www.systemsafetylist.org/0963.htm :

Use of formal methods does scale to at least hundred of thousands lines of code (at least up
to 158,000 lines of code).

Here are below three examples using B Method (http://www.methode-b.com/en/), using
Atelier B tool (http://www.atelierb.eu/en/), with associated cost figures (to answer your
above question). In those three examples coming from subway/light rail systems, both on-
board and side-way software have been formalized.

In the below examples, of course, not all functional properties have been formally verified,
only those relevant to safety critical functionalities. But this is the relevant part, wouldn't
you agree?

* Two first examples:

 1. Subway line 14 in Paris (project end: 1998)

 2. Roissy Airport Shuttle (project end: 2006)

In case 1: 86,000 lines of Ada produced; 27,800 proof obligations; 8.1% of interactive
proofs; 7.1 man.month of interactive proof time.

In case 2: 158,000 lines of Ada produced; 43,610 proof obligations; 3.3% of interactive
proofs; 4.6 man.month of interactive proof time.

* Another example: New York Canarsie Line CBTC (project end: ~2006).

http://www.atelierb.eu/en/
http://www.methode-b.com/en/
http://www.systemsafetylist.org/0963.htm
http://www.systemsafetylist.org/0950.htm

The software is bigger that the previous projects, for example the
on-board vital software of Canarsie CBTC is bigger that ALL vital
software (on-board + wayside) of Paris subway line 14 (i.e. > 86,000
lines of code).

 * Software requirements formalisation: 4 persons over 7 months (28
man.month)

 * Refinement to ADA code: 3 persons over 3 months (9 man.month)

 * (Interactive) Proof: 3 persons over 3 months (9 man.month)

 * Functional test: 3 persons over 3 months (9 man.month)

Sources:
* Formal Methods in Industry: Achievements, Problems, Future. Jean-Raymond Abrial,
ICSE'06.

* B in Large-Scale Projects: The Canarsie Line CBTC Experience. Didier Essamé and
Daniel Dollé, B 2007, LNCS 4355.

Heath Raftery comments on the situation described by Michael Pont thus:

The scenario that plays out in my world goes like this:

1. Customer C requests doodad D to solve problem P.
2. Engineer A says right, no problem, we just need to articulate the requirements and
capture them in an unambiguous way. Formal methods can help, I'll show you the way.
3. Engineer B says, no problem, in fact here's a prototype I whipped up. We're almost there.

Engineer A studied embedded development at an excellent facility and has sound knowledge
of formal methods.

Engineer B taught herself programming and has been writing code since before she could
drive.

4. A's manager asks how D is coming along and A says fine, we're working through the
requirements.
5. B's manager asks how D is coming along and B says fine, look I've got the LEDs flashing
and the relays clicking.

Guess which engineer gets rewarded?

Steve Tockey gave some of his own experiences in response,
http://www.systemsafetylist.org/0977.htm :

 I would like to (optimistically) extend Heath Raftery's example as follows (by the way, I
refuse to refer to person B as "Engineer B" because they clearly aren't one):

Possibility A) Person B's implementation of doodad D is still little more than just flashing
LEDs and clicking relays when Engineer A's solution is ready to go into production.

http://www.systemsafetylist.org/0977.htm

Engineer A's production version works essentially flawlessly.

Possibility B) Person B does provide a "production version" of doodad D however that
production system gives defective output on every 32nd use and crashes--requiring a
complete OS reboot--on every 64th use. Engineer A's production version works essentially
flawlessly.

But will the decision makers ever even notice???

I have a real-world example of a variant on this theme. Details are changed......

I worked for about 8 years at a company that makes very high-tech transportation devices.
I'll use cars as an analogy, but their devices are at least an order of magnitude more
complex than cars.

We start off with Car Product Line 1, which the company has been building with, say,
gasoline engines for almost 20 years. There's a comprehensive suite of "automated test
equipment" (ATE) software--embedded in a hardware platform--for testing Product Line 1
cars as they are being manufactured. All existing test programs were traditionally-built C
code that ran on HP/UX 9. Along comes the need to produce Product Line 1 cars, but with
diesel engines. The "engine simulator ATE" application for gasoline engines is 25K SLOC.
The most reasonable estimate is that engine sim ATE for diesel engines will also be about
25K SLOC however code reuse is not possible for reasons that can't be elaborated here.
Nonetheless, at typical programmer productivity rates and the project's allocated staffing
level, that's more than a year of development. The problem is that we're already in July and
the first diesel engine car will be coming through the factory the following March. We only
have 8 months, not 12. They simply couldn't wait until the following July (or, realistically,
much later given typical software project schedule over-runs) for the diesel version of the
engine sim ATE software.

The project manager, Mike (his real name), had worked with me before on some non-related
projects and was aware of my involvement in model-based development so he invited me to
give the team of four a presentation on the topic. The team was intrigued with the idea that
we could significantly accelerate delivery because that's exactly what was needed. Everyone
agreed to take the model-based development route. Estimates derived from early modeling
predicted a mid-January completion date for the model-based project. We could get it done
in about 6 months, well ahead of the March need date.

A mid-level manager (to remain nameless), having experienced horrible software project
delays--due to necessary debugging--in the past, insisted on having the initial code written
by the end of November. This was intended to allow adequate debugging time before the
need date for the first diesel car. Long story short, the requirements modeling took until the
middle of October. The design modeling took until early December. When that mid-level
manager visited the project in early December, he almost went into orbit when he realized
that the team had not yet written even one line of production code and the project was
already past the point that he had mandated for "code complete". Mike almost lost his job
right then and there.

There was a slight underestimate in the project, code complete (13K SLOC) and hardware
integration was completed around January 21, not January 14 as predicted back in late
July. We had done all of the testing that could be done without an actual car and everything
worked as expected. The engine sim ATE system then sat there until mid March, waiting for

the first diesel car. When that first diesel car was ready to be tested, both it and the ATE
performed flawlessly.

A little more than a year earlier, the corporate executive management team approved the
engineering & development of Car Product Line 2. The schedule from approval to Product
Line 2 car #1 rolling off the assembly line was 2.5 years. The entire ATE software suite for
Car Product Line 2 was included in the schedule and needed all of the 2.5 years for
development. Unfortunately, that project's original software team wasted the first 1.25
years. When the executive management did a check of the Car Product Line 2 engineering
& development critical path, they realized that the ATE software team was still sitting back
at the starting line. The team members had authored a few interesting technical papers and
played a lot of computer games but had made zero progress on actually producing ATE
software. Most of that original team got reassigned to other projects and a new team was
brought in. This new team noticed that Car Product Line 1's engine sim ATE was completed
in about half the time that had been predicted, and that's pretty much what they had: half the
time. So I and three of the four from Car Product Line 1 engine sim ATE were brought over
to get Car Product Line 2 ATE going.

There was a management mandate to "reuse as much of the Car Product Line 1 code as
possible". Unfortunately, code re-use was simply not an option because for some reason Car
Product Line 2 had chosen C++ on HP/UX 10 for implementation. We did reuse a little
code, but only 83 SLOC. Long story short, the entire ATE suite for Car Product Line 2 was
delivered 3 days ahead of the need date for car #1. Keep in mind that the full ATE suite was
a far bigger job, we had 30 developers and delivered 113K SLOC. 6-8 weeks after going live
on the factory floor, we met with the ATE operators to see how they liked it. Simply, they
were amazed at how such a complex piece of software could work so flawlessly from the
very beginning. They had set up a contest to see which operator could crash ATE and
nobody had been able to.

With such fully documented, high quality code the middle managers decided they didn't need
nearly as many software weenies to maintain the Product Line 2 ATE code base. In their
infinite wisdom they completely ignored the fact that we had built a team that took a project
in seriously deep doo doo and made it successful. Rather than find another project that was
in deep doo doo and turn the extra people loose on that, the excess staff got laid off (made
redundant). The team's reward for doing a great job was that most of them lost their job.
Sigh...

Now, wind the clock forward about 12-15 years later. I'm no longer working at the
manufacturing company. By this time they were about half way into Car Product Line 3
engineering and development. Deja vu all over again as they realized that the original ATE
software team had wasted the first half of the project schedule. Again, those people got re-
assigned to other projects and I got a panic call from the new ATE software team. "Aren't
you the guy who bailed out the Product Line 2 ATE software project?". "Yes, why?" "We
desperately need your help..."

But again, code reuse was simply not an option because the Product Line 3 ATE project had
already committed to C#/.net. Nonetheless, ATE software was ready well before Product
Line 3 Car #1 was in a position to be tested. And when tested, both car #1 and ATE software
performed flawlessly.

One very important lesson that this company never learned was that one major reason each
of these projects were able to finish on time/early was because we reduced the amount of

rework to negligible levels. Software projects at that company, like traditional software
projects everywhere, suffered from 50-60% rework ("debugging"). All of the model-based
ATE software projects featured peer review of the models that revealed and allowed
removal of the majority of the defects before a single line of code was ever written. Rework
on these projects was well under 10%, probably closer to 5%.

The other very important lesson that the company never learned was that the other major
reason for finishing on time/early was because of requirements model reuse. If you laid the
three requirements models side-by-side you would notice that 80-90% of the content was
identical. From a "what does it mean to test a car?" perspective, each version of ATE was
largely just a minor modification of the earlier version, thus saving huge amounts of
requirements development time.

In the end, my point is that the data is there. Projects have been done this way and those
projects have been successful. But the business has to take the blinders off and understand
what was done differently and why it made a difference. They seem to be totally incapable of
this. Insert another sigh here...

I should add that what was done on these projects was not strictly "formal methods" in the
sense that's being hotly debated here. We didn't use Z, VDM, or any of those formal
languages. We didn't use theorem provers either. We used UML (and pre-UML because of
project timing) class diagrams and state charts mostly, but we had a carefully defined and
enforced (via the model inspections) single interpretation of that modeling language. Much
like I mentioned in the Jeannette Wing "A Specifier's Introduction to Formal Methods"
paper earlier, the modelers were using a comfortable surface syntax (UML) but there was a
rigorous (albeit not exactly formally-defined) semantic to those models.

I can only speculate on the scalability of formal methods based on my experience. I suspect
that they will scale just fine, provided that the people doing the majority of the "methods"
work can work in comfortable surface syntaxes like UML and keep the Z, VDM, Larch, etc.
stuff hidden under the covers. If anyone wants to do theorem proof of some interesting
property, they are free to do so. Simply take the existing UML model and translate it into the
underlying formal language equivalent and run the analysis on that. Every property proven
about the formal representation has to apply to the UML version because they are
equivalent semantics--they are just in a different syntax.

I don't have to speculate on the scalability of the ("semi-formal"?) model-based
development process. I've personally been involved on projects that had more than 250
programmers working for about 5 years on code bases up to about 5-10 million SLOC. The
projects delivered on time (or early) and the users were amazed by how few defects they
encountered in actual use.

An anonymous contributor, a critical-system analyst and developer with a doctorate in computer
science, contributed the following to a subgroup of discussants (private communication with an
author and others):

Two observations:
1) I taught an introductory course in software engineering at the beginning Master-of-
Science level for about 10 years, about 10 years ago, as an adjunct. I gave the same finite-
state-machine problem for my first “programming exercise” every term. I changed the
names and other data to conceal that it was the same problem. At the beginning of the time-
frame, about 75% of the students got the problem “right” or “nearly right”. At the end of

the time-frame, only about 25%. The official prerequisites to enter the program were
a) A bachelor’s degree in software engineering, computer science, information systems,
computer engineering or similar.
b) At least 2 years of practical experience working with comuters in industry or academia.
This lack-of-knowledge of very basic logic principles of finite-state-machines is, my opinion,
somewhat distressing.
2) In 2012, we hired a second person to work along with me at [my company] in “Software
Quality Assurance”.
I wrote a set of 7 questions that I asked every applicant.
One of those questions was “does the set of initials MCDC mean anything to you?” and the
follow-up question for those who answered “No” (every applicant answered No) was “Have
you every worked on a team where code-coverage was measured to determine how good the
testing of the actual code was?” Again, everyone answered No.
I first did code-coverage measurement in 1972 ([with] PL/S....) and have done it since then
at roughly half of the places I have worked, including here at [my company]. Yet it seems to
be a mostly unknown technique.
So, I’m not surprised at the lack on knowledge and training with-respect-to formal logic.
My undergraduate work (math & teaching) had 1 class (symbolic logic, taught by
Philosophy department, not math). None of my graduate work (computer science) had
anything in logic, but that was 30 years ago. About 25 years ago, I did some formal proof-
of-correctness using Gypsy for a part of an OS kernel.
Right now, where I work, my emphasis is on formalizing requirements and ensuring
traceability from requirements to tests that show that actions which should happen do, and
those which should not, do not.

Steve Tockey replied (private communication with an author and others):

For what it's worth, my employer [a software development company] has a Developer
Testing class that I and some of my co-workers teach. We definitely talk about code
coverage, and we even include a section on MCDC. So while the majority of the software
practitioners probably haven't ever heard of it, those who have been through our class
definitely HAVE heard of it. So there's at least a couple of hundred more people out there
who aren't quite so far back in the dark ages.

And while it wasn't MCDC in this specific case, I did teach a testing class to one of my
customers: an oil company. They had a third party application that they used to help them
design their "distillation columns". To manufacture a distillation column costs about $50
million each. They had used this 3rd party package to design 3-4 of these columns over the
previous couple of years.

An employee of this oil company was the technical person responsible for in-house use of
the 3rd party package. He was in the testing class and learned about input domain
coverage, boundary value analysis, and "all-pairs" testing. He used these techniques to test
that 3rd party package. He found a number of relatively minor problems. But he was also
shocked to discover a fundamental flaw in the 3rd party software that would cause it to
generate an incorrect column design about 10% of the time. The design produced would
look correct but would fail miserably in use, costing at least $50 million to replace the
distillation column and that's forgetting lost production time and all of that.

Even rudimentary [assessment] like this clearly isn't being done in practice…

Peter Bernard Ladkin said what he took out of Steve Tockey's tale,
http://www.systemsafetylist.org/0980.htm :

The bit I take away from Steve's engaging tale is that

1. A lot of attention was paid to the requirements and general design engineering before
code was written. And that seems to have been where most (in terms of effort) of the
difficulties and potential slip-ups were resolved.

2. The specification languages used were formal (class diagrams, state charts) and the
semantics was unambiguous. That is what I suggested needed to be learnt in my Logic
White Paper.

I would call point 2 use of a formal method. Steve suggests it's not "in the sense hotly
debated here." If not, how about a suggestion of a term for "use of formal description
language with an unambiguous semantics" that I and others can use?

Les Chambers recounted a tale of his own about “model-based development”, and drew a number
of lessons from the experience, http://www.systemsafetylist.org/0979.htm :

Story: the soul of a chemical reactor

For many years engineers have used software to enhance the performance of their
machines. My first experience of this was in chemical processing (1975-1985). Working in a
multidisciplinary team I developed process control software for chemical processing
reactors. Put simply, we made synthetic latex, plastics, chlorine, insulating foams ... by
controlling reaction kinetics with software.

Our goal was not only to make high quality product but also to maximise the yield from our
reactants and to make the most efficient use of resources: energy, water, labour and so on.
Given that most of our reactants were either a threat to human health or potentially
explosive, all this had to be achieved with safety.

The software became the brains (nay the soul) of the plant, elevating the operator to a
supervisor of automated chemical production. Software also allowed us to optimise the
physical design of the plant (pipes, pumps and reactor vessels). Using smart control we
could actually reduce the amount of plant hardware required without compromising safety.

From a business perspective, these applications were a resounding success. With much
tighter, intelligent control we were able to produce more consistent quality at higher yields.
Planned outages became less frequent as smart software predicted problems and took
automatic corrective action before they escalated into a plant shutdown. As for the
computers themselves, they were nothing but a tool in the service of chemistry, software was
a means to an end. The programmers were actually chemical engineers on a mission. They
couldn't care less about the beauty of their code, they were more interested in beautiful on-
spec products. For me this was more than a job, it was a meaning of life, it was the best fun
I ever had in my life and, to this day, remains the most successful suite of software
applications I have ever witnessed.

http://www.systemsafetylist.org/0979.htm
http://www.systemsafetylist.org/0980.htm

Building Complex Things

This software success story was largely due to the adoption of the standard engineering
approach to building a complex thing:

• Develop a clear understanding of the problem - then document it. All projects started
with something we called "English language", a clear statement of the operating
discipline structured such that it could be easily transformed into a design models -
something similar to what is now called Requirements State Machine Language. The
English language was usually high quality because it was written by plant engineers
intimately familiar with plant operations and reaction kinetics. As the plant
engineers who wrote the control programs were typically not expert in the
application of computers to control systems, I worked in a central support group that
trained them in analysis methods, control theory and programming techniques.

• Apply the best science to the problem. The applicable sciences were the mathematics
of control theory, and basic chemistry. Control theory, in existence for some years,
was augmented with sampled-data systems theory to produce computer-based
control. The chemical process technology was well established and documented by
technology centres responsible for maintaining corporate memory of "the way we
make chemicals".

• Partition the problem. Chemical processing plants could be very large and complex
with thousands of sensors and final control elements. However, the control problem
could be simply partitioned into various unit operations (reactor, a heat exchanger, a
premix tank, scrubber, distillation column). We applied the finite state machine
model to each unit operation and developed mechanisms for cooperation between
unit operations based on state. This approach has since become known as "model-
based development" - that is, create a model of the system that will support detailed
validation of proposed behaviour before you write a line of code.

• Simplify. Our application language was a simplified variant of Fortran. It had no
looping constructs (no do-whiles, no do-untils, certainly no go-tos). It could be
taught to any engineer with foundation programming skills (some operators with no
programming skills became programmers).

• Apply standard engineering practices - no exceptions. The control requirements of
all plants were analysed using the same analysis method. All process control
programs were organised in the same way. They could be easily read and understood
by anyone in the world who had received basic training. These techniques were
successfully rolled out in three regions of the USA and several European plants. The
Asia-Pacific rollout became my responsibility - it wasn't hard, there was a strong
engineering culture in place before I arrived and as this was brand-new technology,
no preconceived ideas to overcome.

• Reuse elements of past solutions where possible. Successful control strategies that
had been proven elsewhere were reused. Technology centres were tasked with
making sure innovations in process control were communicated and reuse was
maximised. Some programming exercises morphed into comprehensive copy and
paste, with the attendant cost savings. My support group also took responsibility for
"remembering neat ways of doing things," documenting them and promulgating them
- complex stuff like feed-forward control using process modelling or simple stuff like

"open the downstream valve before you start the pump - you idiot!!!"

• Apply strict quality control. It was easy for a newbe programmer to stray from our
best-known practices, so the dos and don'ts of control system design and coding were
well established, documented and rigourously enforced in requirements and code
reviews. We affected a [very rigorous] regime in this respect.

• Perform analysis and simulation. From the beginning it was possible to test our
programs via primitive simulations of plant conditions using dummy inputs. After a
while we began to experiment with running our control algorithms against full-
blown plant simulations. The effort required to analyse, specify and develop these
simulations was roughly equivalent to that ploughed into the control program itself.
The outcome was plant start-ups that took a week instead of a month; a massive cost
saving.

• Manage risk - ask what could kill us next. Every plant I worked on presented many
opportunities to screw up. The ramifications varied from destruction of plant
equipment, to causing sickness or death, to triggering explosions that would not only
destroy the chemical processing complex, but also the surrounding neighbourhood.
There was therefore a formal approach to risk management. A team was tasked with
identifying dangerous states of each plant. Code was then written to sense these
conditions, abort any existing control actions and return the plant to a safe operating
state.

Benefits of the Engineering Approach

There were many positive outcomes from our engineering approach, the most
telling of which was, in 10 years of working in this application domain - with at least 10
projects running concurrently at any point in time, I NEVER once heard of or
experienced a project failure.

I attribute this to:

• Customer focus. The control system software NEVER failed to meet the needs of the
processing plant - mainly due to the customer being embedded in the project and the
high levels of expertise brought to bear on requirements definition.

• Process control. The software development process was simple, well defined and
rigourously enforced. We had no choice, we were always part of a larger systems
project with immovable deadlines.

• Analysis. Analysis methods were mandated and therefore made consistent across all
plants. You could write any program you liked as long as it implemented the plant
control system as a set of cooperating finite state engines. Further, formal analysis of
reaction kinetics and the equipment under control, followed by generation of
simulations, significantly reduced the resources required for plant start-ups.

• Early validation with model-based development. The use of the finite state machine
model allowed us to validate the overall plant control strategy, long before. Code
was written. This eliminated overruns due to rework. We discovered that the most
complex element of control was the logic around state transitions. This logic could
be clearly stated in English and validated by engineers highly experienced in plant

operations, but with no programming skills. If you like it allowed non-programmers
to look deeper into what system was about to do and have more control over its
behaviour.

• Quantification. Effort estimates were accurate. Using the state machine as an
estimating proxy we could predict how long it would take to develop control software
within a week regardless of who was performing the work. This injected welcome
predictability into our projects.

• Documentation. The statement of requirement became the plant operating manual.
Safety imperatives meant it was always kept up-to-date. Prior to plant
commissioning these requirements were subject to rigourous review by process
technology centres.

• Reuse of past solutions. A managed process for reusing innovative control strategies
enhanced quality and saved money.

• Concern for maintainability and safety. Maintainability and safety were key issues in
software development. Plants were constantly optimised and had long operational
lives. Explicit requirement statements easily traceable to simple design archetypes
(state machines) and implemented with simple readable code allowed anyone with
process knowledge and basic programming training to enhance operations
technology through software without compromising safety. There was a standing joke
that after about three months from start up, you had to move the plant engineers who
wrote the program on because life got incredibly boring. Often these plants started
up as optimised as they were ever going to be. All the plant engineer could do was
"stick his fingers in the program" (read over optimise) and screw it up. Better to
move him on to another problem.

• Systems thinking. The software was always considered as a component of a larger
system (never an end in itself). The impact of software on the chemical plant as a
whole was assessed and substantial benefits flowed. Introducing software into a
chemical processing plant produced emergent behavior: high quality product for
one, but by far the greatest benefit came from the ability to trade-off plant hardware
for smarter software. For example, before computer-control it was considered unsafe
to mix certain combinations of reactants in the same reactor. The problem was
solved by using premix reactors to create less volatile, intermediate products.
Computer control gave us tighter control of reactant ratios allowing us to eliminate
premix operations and charge heretofore dangerous chemical mixes into the same
reactor, at savings of hundreds of thousands of dollars.

Peter Bernard Ladkin said what he took away from Les Chambers's tale,
http://www.systemsafetylist.org/0980.htm :

The bit I take away from Les's tale is

1. Same as above

2. Use of cooperating FSMs as a paradigm.

[Chambers] “.... All projects started with something we called "English language", a clear
statement of the operating discipline structured such that it could be easily transformed into

http://www.systemsafetylist.org/0980.htm

a design models - something similar to what is now called Requirements State Machine
Language. “

Could you call it a version of Controlled English? Was it ambiguous or was it
unambiguous?

[Chambers] “.......You could write any program you liked as long as it
implemented the plant control system as a set of cooperating finite state
engines.”

A major engineering company which produces some of the most sophisticated and expensive
engineering artefacts around uses either Lustre or Statecharts for most of its SW projects
and builds very successful, comparatively highly reliable SW. Both Lustre and Statecharts
are based on the paradigm of communicating FSMs. With an underlying formal language
expressing states and transitions. (I already knew some of this but thank you, anonymous,
for expanding on it!)

Les Chambers responded to the queries, http://www.systemsafetylist.org/0981.htm :

[Ladkin] “Could you call it a version of Controlled English? Was it ambiguous or was it
unambiguous?”

Unambiguous. The English was the operations manual. The operators basically watched
things happen for most of the time. Much like an aircraft on automatic pilot. They were
supervisors of automation. Every now and then some intervention might be required. For
example, the system might have discharged a batch reactor to storage tanks, but it is still
stuck in the discharge state, even though it is empty. Usually when a reactor was discharged
it would automatically transition to a wait state, where it waits for the conditions that need
to occur for it to be charged for the next batch. Why hasn't gone to the wait state? Okay, the
operator looks up the English which is in a printout on the desk. He looks at the English
language description of the logic around the state transition from discharge to wait and
finds that the reactor weight reading (xxx kg) needs to be below a certain value and the flow
reading in the discharge line needs to be zero. Say he knows that the weigh cells on the
reactor are out of calibration. It actually is empty, because the discharge pump is still
running and the flow in the discharge line is zero. So he manually forces the reactor into the
wait state.

The English language [description in the operations manual], therefore had to be very
specific, unambiguous and always up-to-date, reflecting the code. Failure to keep it up-to-
date was a safety hazard, much like sending a pilot up with the wrong aircraft operations
manual.

The useful thing about state engines is that, at the surface, they present a simple metaphor
that most people can easily understand. As I think Steve mentioned the challenge is to
achieve this with other formal methods - complex as you like under the hood, but simple
when viewed from the outside. I can't emphasise enough that these methods saved my
company a fortune. The story is available here:
http://www.controlglobal.com/articles/2006/029/. They have since partnered with ABB and,
I assume, are implementing similar ideas on the ABB System 800xA.

I know I am preaching to the converted, but I find it difficult to understand why any
educational institution would be debating whether or not to teach these methods. It's a no-

http://www.controlglobal.com/articles/2006/029/
http://www.systemsafetylist.org/0981.htm

brainer. There must be many opportunities to conduct joint research with large-scale users
of control systems and control systems vendors. After all, don't we as software engineers,
depend on computer scientists just as a mechanical engineers depend on the laws of physics.
Unfortunately, cooperation between academia and industry is patchy. A great example of
success is the Carnegie Mellon software engineering institute's work on architecture. Refer:
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=58932. I found this article
nothing short of inspiring.

Commentary

There are a number of themes recurring in various places in the discussion.

First, the importance of engaging a development team, including managers, who understand the
applicable technical methods and what they achieve if used appropriately. Contributors relate stories
of engineers who don't know MCDC assessment, who cannot handle basic state-machine concepts,
who do not know how to use formal description languages, or the efficacy of unambiguous
semantics.

Second, the importance of using an efficacious development method, which emphasises
requirements specification and analysis. Both Steve Tockey and Les Chambers gave extended
examples of software development in which the scope and the intent of the software was precisely
specified, in detail, before the software (the “source code”) writing task was commenced. Both
related considerable success in doing so (Tockey in direct comparison with another approach).
Similarly, Martyn Thomas referred to articles by the late Peter Amey of Praxis, which detail the
success of Praxis's similar approach, of specifying formally the requirements for software (using a
method called REVEAL, which results in requirements specifications in the formal language Z)
before the software is written; indeed, the authors understand from Amey (personal communication)
that very often the requirements specification was completed under a separate, prior contract to the
software-production contract. (The importance of efficacious requirements specification and
analysis is addressed in another publication: Ladkin, Sieker, 2014 to appear.)

Third, the importance of using some kind of description language for specification which is clear
and has an unambiguous semantics. Tockey writes of UML with enforced unique interpretation.
Chambers writes of Requirements State Machines and Unambiguous English (our coinage). An
anonymous contributor writes of SCADE (which uses the Lustre state-machine language as
specification) and Statecharts (although cautioning that the semantics of Statecharts can be
problematic in certain cases). Amey indicates REVEAL/Z.

Fourth, the ubiquitous nature of state machines, and state machine techniques.

Contrary Views

One contributor is sceptical about the value of so-called formal methods, Derek M. Jones. He
considers, as do most engineers familiar with their history, that claims of the efficacy of formal
methods have historically been exaggerated. Historically, formal methods have been associated with
“program proving”, the attempt to prove mathematically that a particular computer program
produces output with certain properties, or behaves in a certain specified way.

(Indeed, one of the authors worked for a project in the 1980's in California, in which the SRI code/
theorem prover EHDM had been used to attempt to verify the operating system of NASA's
pioneering SIFT digital flight control computer. The SIFT verification project ran for some seven or

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=58932

eight years. The independent project assessors noted that the achievements of the project did not
match what had been claimed for the efficacy of the verification attempt. For an account of the
project, see Donald MacKenzie, Mechanising Proof: Computing, Risk and Trust, MIT Press, 2001.
The project had involved a number of very distinguished computer scientists, who had published
their work in the most well-respected journals in computer science and software engineering, the
Journal of the ACM, the ACM Transactions on Programming Languages and Systems, and the
IEEE Transactions on Software Engineering. The main result of the SIFT project was that formal
verification of executable code written in an imperative language, “proving” code, was much harder
than had been thought, and lay at that point for practical software systems beyond the state of the art
in computer science. This is a significant result in computer science. It has led to significantly
different approaches to the use of formal validation and verification techniques in software and
digital-computer hardware. However, in the usual way of things it is socially difficult to document
and publish failure as a result, so this major result is poorly categorised adn characterised in the
literature. It is, however, available as a NASA Technical Report, as far as the author knows. The
author remains proud to have had the opportunity to contribute to the SIFT verification effort!)

It seems Jones is concerned specifically about traditional program verification as above, in which
formal logic is used to attempt to demonstrate that a program does what its specification says.

We note that this is just one of the applications of so-called formal methods, and not one of the 26
industrially mature methods enumerated in Ladkin 2012 (Functional Safety of Software-Based
Critical Systems, paper to accompany Keynote Talk at the Ada Connection conference, Edinburgh,
June 2012: http://www.rvs.uni-bielefeld.de/publications/Papers/LadkinAdaConnection2011.pdf). It
does constitute a lot of the early work in program verification from 1969 onwards, the date of
publication of Floyd-Hoare logic. The Hungarian academic Gergely Buday referred Jones to the
work at http://www.nicta.com.au/pub?id=5717 which narrates an attempt at large-scale logical
program verification using Isabelle/HOL, about which Jones is equally sceptical: http://shape-of-
code.coding-guidelines.com/2012/05/23/would-you-buy-second-hand-software-from-a-formal-
methods-researcher/ .

Given that Jones is largely concerned with this one aspect alone of formal methods, one which has
not yet been industrially successful over the long term, it seems to the authors that

• it is correct that industrial-scale logical program verification is an unsolved problem, as
Jones implicitly suggests; and

• this one application of formal methods is an overly narrow basis on which to dismiss all
uses of formal methods, in particular the use of formal description languages with
unambiguous semantics, given the affidavits here of other users of this technology such as
Tockey, Thomas, SCADE users, Statecharts users, and SPARK developers and users, as well
as the authors themselves;

• Jones's dismissal does not appear to constitute a sustained argument. He changes his
estimate of the efficacy of formal program verification during discussion from
“[inefficacious for] anything but the smallest problem” to “may scale to a few thousand
lines of code”. While this represents a worthy response to counter-arguments, such as from
David Mentré who pointed out that the methods in the B toolset have been successfully used
on between 100,000 and 200,000 lines of code, it does not represent a stable conclusion with
a solid argument behind it. No matter what one's view of the matter, one may well wonder if
further evidence from practical projects would lead Jones to a further upwards revision of
the current limit of efficacy.

http://shape-of-code.coding-guidelines.com/2012/05/23/would-you-buy-second-hand-software-from-a-formal-methods-researcher/
http://shape-of-code.coding-guidelines.com/2012/05/23/would-you-buy-second-hand-software-from-a-formal-methods-researcher/
http://shape-of-code.coding-guidelines.com/2012/05/23/would-you-buy-second-hand-software-from-a-formal-methods-researcher/
http://www.nicta.com.au/pub?id=5717
http://www.rvs.uni-bielefeld.de/publications/Papers/LadkinAdaConnection2011.pdf

Most surprising, maybe, is the phenomenon that only one contributor is predominantly sceptical
about the use of formal methods, and even he restricts his arguments to the historically-exaggerated
claims for formal program verification. He does not address the efficacy for software development
of expressing and analysing requirements using a formal description language and an unambiguous
semantics for it. He does not address the question of demonstrating desirable properties of programs
other than traditional formal verification, for example the claims by developers at Praxis (now
Altran) that their techniques produce programs demonstrably free of run-time errors (Amey, op.
cit.). He also does not address the question of exactly what properties of the train control software
the Atelier B verification effort, cited by Mentré, were established by that effort.

There is, of course, some self-selection involved, both in joining the mailing list and in contributing
to discussion on the point of logic in the computer science curriculum, and the efficacy of formal
description languages with unambiguous semantics. Such self-selection may mitigate against the
strong expression of contrary views.

