Chapter 10

Generating Fault Trees from
CIDs

(with Bernd Sieker and Joachim Weidner)

We show how to generate fault trees algorithmically from Causal Influence
Diagrams (CIDs), and report on the implementation of such a facility in the
drawing tool cid2ft.

10.1 Some Considerations on Fault Trees

Fault trees are a widely-used method, standardised in many countries, of cata-
loguing in a structured manner the myriad ways that a system can go wrong.
Fault trees have been used in the engineering of safety-critical systems for a half
century, starting with the Minuteman ICBM system and the nuclear power in-
dustry [VGRHS1] in the USA. In many industries they remain the prime method
of assessing the safety properties of a system design in advance of building the
system. They can also be used during and after an incident for finding the source
of failure, in other words for high-level “debugging”.

Fault trees have two fundamental theoretical aspects: logical, and probabilis-
tic. The logical aspect is fundamental, since the probabilistic features supervene
upon the logical. We shall deal here exclusively with the logical aspects of fault
trees.

10.1.1 How Fault Trees Look

Figure 10.1 repeats Figure 9.3 and shows a pressure tank, and Figure 9.14 shows
a fault tree for the pressure tank (at this high level of design) taken from [Lev95].
The pressure tank example in various versions is a “classic” amongst fault tree
explanatory examples, likely because of its appearance as such in the Fault Tree

137

138 Generating Fault Trees from CIDs

Computer Inform
controller operator

Steam in {)}4 N E &4

Vent 1

Product out

X

Catalyst in '1*} ___ — 9(}_ - Vent 2

Pressure
Tank

Hydrocarbon in {*}

Figure 10.1: The Pressure Tank With Overpressure Vents

Handbook [VGRHS81], written by some of the original developers of fault tree
methodology in the nuclear power industry.

We have implemented a postprocessor to our program for displaying Causal
Influence Diagrams (CIDs), cid2dot, for automatically generating fault trees
according to the techniques explained here. Since cid2dot uses the dot graph-
drawing tool, which draws straight edges between nodes, rather than the horizontal-
vertical cornered edges used in conventional fault tree display, we shall display
the fault tree in Figure 9.14 as in Figure 10.2.

10.1.2 The Logical Structure of Fault Trees

Logically speaking, fault trees are a cognitively amenable graphical representation
of certain Boolean formulae (annotated with probabilities, which we are here
ignoring). As one can see from Figures 9.14 and 10.2, a fault tree is a tree with
labelled nodes, in which the relation between any node and the totality of its
childen is annotated with “AND” or with “OR” (typically drawn using old-style
logic gate symbols between nodes and their children).

The Boolean Form

Specifically, a fault tree is essentially a syntax tree for a positive Boolean expres-
sion, whose unanalysed (as the logicians say, “atomic”) formulae are the labels
appearing in the nodes of the tree. A positive Boolean exrpression is a Boolean
formula which uses the logical constants “AND” and “OR” only, or a Boolean
formula logically equivalent to such a formula.

139

10.1 Some Considerations on Fault Trees

uo s[rej
Y31 J03R01pUI USd()

SQAnudNIRUI
IojeradQ

uo s[rej
Jojedrpur
uonisod [9A[RA

7 QAJRA
uado 03 mouy
j0u so0p JojeradQ

1 9A[eA uado 01
pUBWILIOD INSSI
jou saop 1ndwo)

aInyrej
AATRA

de] 00)
jndino 19ndwo))

aInyrey
JOJIUOW INSSAIY

[9ATBA
uado jou seop MHMW&
Iomdwo) [EA

uado 10U seop
¢ Add

uado jou soop
I Add

31y 00}
CALLNNEAR |

uorsofdxg

Figure 10.2: The Redrawn Fault Tree

140 Generating Fault Trees from CIDs

If R is the label of the top node of the tree, the assertion represented by the
fault tree is that

R is equivalent to (the Boolean formula denoted by the tree)

R is typically a statement of a fault (either a failure of function, or a violation
of a safety requirement of some sort). Let the Boolean formula denoted by the
tree be denoted by B. The fault tree thus asserts that fault R occurs in exactly
the circumstances in which B occurs.

We call a fault tree correct if and only if the statement R is equivalent to B is
true. Suppose that (the fault tree corresponding to) B is correct. Suppose further
that B’ is (the assertion corresponding to) another fault tree for R, and suppose
that B’ is correct. Then because both R is equivalent to B and R is equivalent to
B’, B must be equivalent to B’. It follows that all correct fault trees for R with
the same atomic formulae are Boolean equivalents of each other. Given the same
collection of “faults” (atomic formulae), all correct fault trees for R are then just
rewrites of each other.

Logical Relation to Causal Logic

The logic EL for describing system behavior will be introduced in Chapter 20
and forms the logical basis for Why-Because Analysis (WBA), which is a part
of CSA. EL is a multi-modal logic, including temporal logic as well as Lewis’s
causal logic. It is well known that, given a first-order logical language sufficient
for describing fully any possible state of a system, this language will in general
fail to describe all failure modes of the system, some of which depend on specific
behavior (sequences of states). Temporal logic suffices for this role; in general, any
system specification may be written as a conjunction of a “safety property”! and
a “liveness property”, which is an assertion about state properties that will occur
at generally undetermined times in the future. This claim, that any specification
may be written as such a conjunction, is a central theorem of formal system
specification, and is by no means trivial to prove. Liveness properties are not
in general equivalent to safety properties. They have in general a much higher
objective logical complexity.

It follows that Boolean formulae over the available state predicates for the
system do not suffice in general to express liveness properties. Since some vi-
olations of system properties which one might want to represent as fault trees
may well be, or imply, liveness properties, if follows further that fault trees over
the available state predicates of a system do not suffice for expressing all viola-
tions of expressible system properties. If all safety properties of a system may

L Safety property is a technical term in system specification, referring to a property which
may be expressed by a state predicate, and should not be confused with the concept of safety
which we are using here throughout, although the two are related. We shall call the system-
specification sense of “safety property” a technical safety property.

10.2 Why Generate Fault Trees Automatically? 141

be represented as technical safety properties, then one has a chance to represent
the safety properties as fault trees (which we shall show immediately). Whether
safety properties of a given system may be represented as technical safety prop-
erties depends, upon other things, on what is chosen to be defined as an accident
of the system.

A failure corresponding to R leaves the system in a particular state, and all
states of the system, as considered in the description language L, which may be
a high-level or low-level system description language, can be represented as a
conjunction of basic formulae of L (a basic formula is an atomic formula in L
or the negation of an atomic formula). So the collection of all possible failures
corresponding to R may be represented as the disjunction of all such state de-
scriptions (conjunction of basic formulas of L). This is writing R in “disjunctive
normal form” (DNF). But while this is theoretically possible, the DNF may be
orders of magnitude larger than the most succinct form of writing the same failure
mode R as a Boolean expression — indeed, the function converting an arbitrary
Boolean formula into a DNF equivalent is of exponential complexity (in time and
space!). So this is not very plausible method of obtaining a fault tree in practice,
even in this case.

A CID in general says how a system works, physically. That is, in general one
could consider it as a form of specification of a system. Since specifications can
be logically more complex than Boolean expresssions, it follows that in general
the generation of a fault tree from a CID will be a true reduction, in that some
information will be lost. It may be, then, that a given fault of the system may
have no correct fault trees. In such a case, there will be failures of the system
which will not be representable by a fault tree; otherwise put, any fault tree
representation will be deficient in some way. This has significant consequences
for safety assessment of the system.

Besides this warning, in this case, one could expect plausible reduction meth-
ods to come up with fault trees that are not logically equivalent (or even seman-
tically equivalent) to each other. It may be very hard or impossible to decide
what the appropriate procedure is in these circumstances. Should one choose a
“preferred” fault tree, and run the risk that its debugging and prediction prop-
erties are incomplete? Or should one use them all, to achieve a greater level of
completeness at the cost of significant repetition? Anwering these questions is
beyond the scope of the current work. We wish only to make it clear that gen-
erating fault trees remains in general an information-lossy process. Nevertheless,
let us go ahead.

10.2 Why Generate Fault Trees Automatically?

Designing fault trees is an art based on experience. Designing CIDs is an art
based on experience. If one needs a fault tree, why would one substitute an

142 Generating Fault Trees from CIDs

indirect method, such as designing a CID or CIDs, followed by an automated
or semi-automated step, generating the fault trees from the CIDs, for the direct
method of just drawing the fault trees?

We believe, and our experience has shown us, that CIDs are intuitive rep-
resentations of the way a system functions or fails. System designs are often
represented by “functional diagrams” and other diagrammatic devices, and the
corresponding CIDs are conformant with, although not identical to, the func-
tional diagrams. This suggests to us that one is less likely to need “Eureka” steps
when designing a CID, and more likely to find errors when checking the correct-
ness of a CID. The concept of how things work is more cognitively malleable and
more cognitively familiar, than a concept of how things fail. We think correct
CIDs are easier to come by than correct fault trees.

Further, we noted above that not all system properties relevant to fulfilling
function or to avoiding accidents may be expressed by technical safety properties.
There are examples of liveness properties, such as “always-eventually” properties,
which are not equivalent in general to technical safety properties. An always-
eventually property of a system is a property that a specific type of state will
recur continually throughout the life of the system, although no regularity is
asserted as to when it will occur and what the gaps are between recurrences.
Suppose we make the reasonable assumption that a teleological system satisfying
an always-eventually property will satisfy it in a causal way, that is, the design will
ensure (“ensure”, and not just “allow”) that the always-eventually property will
be satisfied, by introducing or availing itself of causal mechanisms. The property
“always (X implies eventually Y)” is a classical example of an always-eventually
property, and along with the property “always eventually X” entails “always
eventually Y”. Such properties are not always reducible to safety properties. Such
properties will be ensured in a teleological system through causal link “X — Y”
with hysteresis (that is, unspecified time delay), which is represented in the CID
with the annotation “TIME” on the arrow linking “X” to “Y”. So CIDs have
some expressive capabilities for teleological systems which lie near to the system
specifications. Fault trees are unable to express always-eventually properties in
general.

We have found that CIDs in practice are indeed cognitively closer to system
function specifications and important complex system properties of teleological
systems, and that designing them is cognitively easier a task than designing fault
trees by hand; corresponding errors are reduced and error-detection is enhanced.
However, the case for having and using fault trees has been made above and
elsewhere; we may take it that we need them. We believe this makes the case
for generating fault trees as automatically as possible from hand-designed CIDs
over hand-designing fault trees. We propose to show here how fault trees may be
automatically generated from CIDs.

10.3 A Causal Influence Diagram Example 143

A
B E
C G
F
H
D
I
J
K
L

Figure 10.3: An Example of a CID

10.3 A Causal Influence Diagram Example

Suppose one has a Causal Influence Diagram (CID), as in Figure 10.3. The nodes
are labelled abstractly. We denote the single alphabetic labels in the text using
quotation marks, to make reading them a little easier. “A” is here the description
of a desired function or state, not a failure description. We shall deal later with
the case in which a CID contains a failure description.

The CID shows a succession of necessary causal factors (NCFs). One might
hope, in a completed CID, that the causal factors shown are also sufficient (SCF's),
and in cases in which this is true, the procedure we shall describe may be simpli-
fied somewhat. However, the analysis proceeds under the assumptions

e that each causal factor is necessary, and

e that each confluence or “join” of two or more necessary conditions to a
parent node represents a collection of conditions jointly sufficient for the
occurrence of the parent situation.

144 Generating Fault Trees from CIDs

Conditions which are individually necessary for the parent and jointly sufficient
we shall call INJS factors. The second assumption then says that any node
with two or more in-edges has a collection of INJS conditions as children. This
assumption entails that one must take particular care in formulating “alternative
paths” to a node in a CID, that these alternatives terminate in a set of INJS
conditions for their confluence.

10.4 Denoting “Normal” and “Failure” Condi-
tions

First, we show how to deal with chains. The CID in Figure 10.3 presents the
causal ancestors of a situation “A”. We assume that “A” is a condition expected
in or consistent with the system specification and the system’s safe running, and,
correspondingly, that “Not A” represents a fault or failure condition of some
kind (either a functional failure, or an accident or a hazard).? This assumes that
all factors are discrete factors, since, with fluents “X”, there is no prima facie
meaning to an assertion “Not X”: if “X” is “Temperature(Liquid)”, for example,
it makes no sense to say “Not Temperature(Liquid)”. We handle this case by
“discretising” the fluents, as explained below.

Suppose “X — Y” is an edge in the CID, and “X” and “Y” are discrete factors.
Then, “X” is a necessary causal factor for “Y”. That means that “Y” cannot
occur without “X”. Thus “Not X and Y” is an impossible situation; “X and Y”
is the functional situation; “Not X and Not Y” is a situation in which some causal
influences on “A” are not present; and “X and Not Y” is a failure situation: some
wished-for causal mechanism has been hindered. Natural language is expressive
enough for this failure of a desired causal mechanism to have, maybe many,
succinct and evocative representations, but we shall simply use the phrase “X and
Not Y” to represent such a failure. In the case in which “Y” has no predecessor
in the CID, we shall simply write “Not Y”. If this convention may be uniformly
followed throughout the fault tree construction; a more succinct representation
of the failure condition can be substituted at the end of construction if desired,
and meanwhile the label carries its origin with it during construction, enabling
more efficient error-checking.

2CIDs devised to analyse failure conditions or accidents may already have the top node
labelled “Not A”. The convention we use here is thus important for generating the fault tree.
Nodes that represent failure conditions will implicitly include what we represent as a “Not ...”
in what follows, whether that negation is explicitly present in the label or not. Another, maybe
preferable, way of checking this would be to annotate a formula explicitly with (F) when it
represents an “undesired” condition, and leaving it unannotated when it represents a “desired”
or “within-specifications” condition. In the case in which a node is labelled “X (F)”, then, “Not
X” would actually represent a desired or “within-specifications” condition, and would not be
annotated.

10.5 Handling the Individual Components 145

>

L

Figure 10.4: A Chain of Necessary Factors and Ancestors

The case of “X — Y”, where “X” and “Y” are fluents, is largely similar. A
normal condition is represented by a particular relation, say “P”, between the
values of “X” and “Y”. We can denote this situation by “P(X,Y)”. When this
situation does not hold, namely in the case of “Not P(X,Y)”, then it is obvious
that we can reasonably use the same “Not” annotation as for the discrete case.
However, the label of the node itself is not “P(X,Y)”, but, rather, “X” or “Y”.
Further, the description of “P” may be much too involved to want to write in a
node label, and, besides, its description is irrelevant to the task of generating a
fault tree. We choose to write, as a failure designation, “Y is out of tolerance
with respect to X”, or, more succinctly, “Y is out of tolerance”. We shall denote
this in abstract example even more succinctly as “X and Not Y”, as we do in the
discrete-factor case, since when we are dealing with abstract CIDs, as here, we
do not know which factors are discrete and which fluent, and we do not need to
know. In concrete examples, we shall use the “out of tolerance” nomenclature.

10.5 Handling the Individual Components

The CID consists of a chain of causal factors “L” — “J” that are necessary causal
factors for succeeding factors that are eventually necessary for “A”. The relation
of being an NCF is not transitive. That is, if X is an NCF of Y and Y is an NCF
of Z, this does not necessarily mean that X is an NCF of Z. It might be or it
might not be. Thus we show “J” as a necessary causal ancestor (NCA) of “A”,
meaning that it is one in a chain of necessary causal factors that lead to A, by
using a dotted line in Figure 10.4.

Since all factors shown in Figure 10.4 are necessary, but not necessarily suf-

146 Generating Fault Trees from CIDs

N

‘J&NotA ‘ ‘K&Not] ‘ ‘ Not L ‘

L & NotK

Figure 10.5: The Fault Tree Arising From the NCA Chain

ficient, or at least not known to be sufficient, any one could occur without the
condition of which it is an NCA occurring. That is, “L” could be the case with-
out “K” occurring, “K” could be the case without “J” occurring, and “J” could
be the case without “A” occurring. In a case in which, say, “L” were also to
be a sufficient causal factor for “K”, then an occurrence of “L” entails that “K”
occur also, and it would not then be the case that “L” could occur without “K”
occurring. But let us deal first with the situation in which all are known to be
either NCF's or NCAs of their successors in Figure 10.4, as indicated.

The situation in which “L” occurs but “A” does not occur, according to the
CID in Figure 10.4, is represented in Figure 10.5. The three possibilities for failure
are explicitly denoted, joined with the customary “OR” gate symbol. This is just
a graphical means of representing the disjunction of the state descriptions in the
boxes and is widely used in fault trees.?

The case in which a link in the chain is a sufficient causal factor or sufficient
causal ancestor is shown in Figure 10.6. The condition “X” is an SCA of “A” |
whereas “Y” is an NCF of “X” and “Z” an NCF of “Y”. So the situation “Z and
Not Y” can arise, as can the situation “Y and Not X”, but since “X” is sufficient
for “A”, the situation “X and Not A” is impossible, and thus, in contrast to the
fault tree in Figure 10.5, the factor “X and Not A” is not shown. The fault tree
resulting from the chain including an SCA is shown in Figure 10.7.

The case in which one has two NCFs that are INJS conditions, but in which
neither is individually sufficient, is shown in Figure 10.8. In this case, “B and E
and Not A” is not possible, since “B and E” entails “A” (this is what it means for
“B” and “E” to be jointly sufficient). But each factor indivudually is necessary,
although not presumed to be sufficient, so “B and Not E and Not A” is possible,

3The major difference between the notation we use here and that of fault trees is that we
use direct but slanted lines to connect nodes with their Boolean “gates”, whereas official fault
tree notation uses a combination of horizontal and vertical lines. We do not believe that this
slight syntactic difference hinders understanding the procedure.

10.5 Handling the Individual Components

147

Figure 10.6: A Chain of NCFs with a SCA

< hanes] >

=

Z

Not A

Z & NotY

Y & Not X

Not Z

Figure 10.7: The Fault Tree Arising from the Chain of NCFs with a SCA

148 Generating Fault Trees from CIDs

A

N

B E

Figure 10.8: Two Individually Necessary, Jointly Sufficient Factors

B & (Not E &) Not A (NotB &) E & Not A

Figure 10.9: The Corresponding Fault Tree for the INJS Factors

as is “Not B and E and Not A”. The labelling we use on the fault-tree nodes is the
pre- and post-conditions of the factors in the NCF/NCA /SCF/SCA relations, so
these labels with three factors reduce to “B and Not A” and “E and Not A” for
the fault tree representation in Figure 10.9.

10.6 Putting It All Together

We presume that the CID in Figure 10.3 is complete, that is, the individual edges
indicate the relation of NCF and, when a node has two or more in-nodes, those
in-nodes are INJS conditions.

The first step proceeds exactly as indicated above. We repeat it here for
completeness.

Multiple Path Reduction(MPR) Where multiple paths connect two nodes
in the complete graph, we connect them with an NCA arrow, and eliminate
the intervening nodes.

We then apply the MPR operation iteratively:
MPR Iteration (MPRI) Iterate MPR until there are no more multiple paths.

We arrive at the CID in Figure 10.10.
Now:

10.6 Putting It All Together 149

L

Figure 10.10: Step 1, After Application of MPRI

N

‘J&NotA ‘ ‘K&Not] ‘ ‘ Not L ‘

L & NotK

Figure 10.11: Step 1, After Application of CC

Chain Conversion (CC) Convert an NCA chain into a fault tree.

The resulting fault tree, as before, is shown in Figure 10.11.

The “J”—to—“A” fragment of the CID can now be expanded into a fault tree.
This fragment is shown in Figure 10.12.

We first consider the node “A”, which has two in-edges. We have seen that
this node with its two predecessors can be transformed as above, which we notate
as follows:

INJS Resolution (INJSR) Apply the INJS transformation to a specific node

We apply INJSR as follows:
Break Multiple Paths (BMP) When there are multiple paths from node “X”

tonode “Y”, and node “Y” is a confluence node of those paths, apply INJSR
to “Y”.

150 Generating Fault Trees from CIDs

A
B E
C G
F
H
D
I
J

Figure 10.12: The J-A Fragment

We apply BMP thus to “A”. The result, as above, is shown in Figure 10.13.

We are now left with a chain to reduce, denoted by the node “E and Not A”,
which we recall is “E and Not B and Not A”, and a part-chain, part-multipath,
graph fragment, denoted by the node “B and Not A”, which we recall is “B and
Not E and Not A”. The chain is shown in Figure 10.14, and the chain-multipath
is shown in Figure 10.16.

The chain in Figure 10.14 can be handled as before using CC, and the resulting
fault tree is shown in Figure 10.15.

Finally, the “J” to “Not E” fragment looks like Figure 10.16, to which MPR can
be applied, resulting in Figure 10.17. The fault tree obtained from Figure 10.17
is shown in Figure 10.18

In the final step, we apply INJSR and BMP to the node “I and Not E”, resulting
in the transformation shown in Figure 10.19.

The final result of putting all these steps together is shown in Figure 10.20.
Here, the uppermost “OR” node has five children, which arise from fusing the two
“OR” nodes in Figure 10.11 and Figure 10.13, which corresponds to a Boolean
identity arising from the fact that “OR” is an associative and commutative oper-
ation. A final point to note is that the “Not J” node in Figure 10.15 as well as a
similarly-labelled node in Figure 10.18 have been identified with the node labelled
“K and Not J” under the top-level “OR” gate. This operation is as follows:

10.6 Putting It All Together

151

B & (Not E &) Not A (NotB &) E & Not A

Figure 10.13: Applying BMP

(E and) Not B and Not A

Figure 10.14: The J-to-Not-B Fragment

Not B & Not A

N

D and Not C ‘ ‘ NotJ ‘

‘ C & NotB ‘

J and Not D

Figure 10.15: The J-to-Not-B Fault Tree

152 Generating Fault Trees from CIDs

(B and) Not E and Not A

/

J

Figure 10.16: The J-to-Not-E Fragment

(B and) Not E and Not A

[B LR RRRRERRNNT =

\

Figure 10.17: The J-to-Not-E Fragment After BMP

10.6 Putting It All Together

153

Not E & Not A

J & Not 1

I and Not E

Not J

Figure 10.18: The J-to-Not-E Fault Tree After BMP

I & NotE

I & NotH

H & Not G

F & NotE

G & NotE

I & Not F

Figure 10.19: The I-and-Not-E Transformation Sequence

154 Generating Fault Trees from CIDs

‘(B&)NotE&NotA‘ ‘ ‘
‘L&NotK ‘ ‘ K&NotJ‘ ‘ Not L ‘

‘ (E&)NotB&NotA‘

‘J&Notl ‘ ‘ I & NotE ‘

C&NotB

A x Jand Not D

‘ I & Not H ‘ ‘ H & Not G ‘

G & NotE F & NotE 1 & NotF ‘

Figure 10.20: The Complete Fault Tree

Node Fusion Identify nodes in component sub-trees with any node containing
the same “Not”-assertion, when the labels in the node which do not occur
in the component sub-tree are omitted.

Using mode fusion, we observe that node “K” appears neither in Figure 10.15
nor Figure 10.18, and therefore, when the label “K and Not J” is restricted to
the nodes in the sub-trees in Figure 10.15 and Figure 10.18, one obtains “Not J”
and the three nodes may be identified with the single node labelled “K and Not
J”.

The operations described largely commute, that is, they can be performed
in various different orders with the same overall result. It is not yet clear to us
whether and how different orders of performing operations affect the efficiency of
the resulting algorithm. Besides, it is not clear that efficiency of the fault-tree
production algorithm is at all important. Fault trees are generated once and then
looked at a lot (one hopes!). Correctness ofthe results is more important than
efficiency of the generating algorithm. Our continuing work on the automatic
generator explores various efficiency and other questions of algorithm engineering.

10.7 A Simplified Fault Tree

We have shown how rigorously to derive a fault tree from a CID. The primary
way in which such a generated fault tree may be simplified is through observing

10.8 Implementing Fault-Tree Generation 155

various of the intermediate nodes in Figure 10.20 to be superfluous. That is, they
describe a situation which has a trivial logical relation to situations described in
other nodes in the fault tree. This simplification procedure remains a human
operation for us (in principle one could use some sort of logic checker to test the
logical relations between the various faults. We would guess, however, that this
would be too much work for the potential benefits it might reap).

10.7.1 Handling Superfluous Nodes

When nodes are observed to be superfluous, they can simply be omitted from the
fault tree. It may also be that it is convenient for semantical purposes to leave
them in. Thus we prescribe no algorithmic method for dealing with such super-
fluities. We suggest it is best to inspect the generated fault tree by hand, identify
potential superfluities by inspection, and eliminate them if it is felt appropriate
to do so.

10.8 Implementing Fault-Tree Generation

We have implemented an algorithm to generate fault trees from a CID in the
cid2ft tool. The tool is written in the scripting language PERL and is available
for use over the Internet through our WWW site [LR].

The CID for the pressure tank from Figure 10.1 is repeated in Figure 10.21 for
convenience. The CID for the Vent subsystem, in correct operation, is shown in
Figure 10.22, and the fault tree generated automatically by the CID-to-fault-tree
code is shown in Figure 10.23.

10.8.1 Labelling the Fault Tree Nodes

The fault tree in Figure 10.23 has a number of features worth remarking. First,
it is customary in fault-tree generation to label with nodes with short natural-
language descriptions of the fault. We do not do this. Instead, we label the nodes
wiht a sentence of logic, derived from the formalised language used for describing
the CID. We have a simple logical algorithm for generating the labels. Short,
intuitive labels for the annunciated faults may be defined through a glossary,
which uses a series of definitions such as illustrated in the table Figure 10.24.
The labels are best generated by hand, because there is likely to be no simple
automatic way to generate an intuitively appropriate name for a particular type
of failure. Engineering practice already has conventional names for failures, but
to our knowledge there is no algorithmic relation between the conventional labels
and the logical form of our automatically generated labels. An algorithm for
generating short labels is thus inappropriate, and short labels are best generated
through a glossary as in Figure 10.24, because

Generating Fault Trees from CIDs

156

(13U2A)Paso[) (QudA)PasorD

(sAere))armeradwa], (QH)2mmeradwa], (weag)armeradwa],

(OmAmuengy (wearg)Kinuengy

N

QWN[OA PaxXI]

/H/; J}_\E; HNLL+ ANLL+ E\Es,\

(vonpoig)ameroduwa],

N < (Jue [)anssaig

(que)pammdny

(3onpoid)Amuend)

Figure 10.21: The CID for the Pressure Tank

10.8 Implementing Fault-Tree Generation 157

Operator perceives On(Warnlight)

Q =
5 5
o <
2 =
3 o
4

Operator commands Open(Vent2)

Pressure(Tank) >Q

On(TankPressureSensor)

Not Fixed Volume

Not Closed(Vent1)

Command(Open(Vent1))

Figure 10.22: The CID for the Vent Subsystem

e engineers are likely to use the intuitive failure labels in their everyday prac-
tice, and

e it is cognitively more efficient if the fault tree labels correspond to those
used by the engineers in their everyday practice; and

e for reasons illustrated in the formal WBA in Part IV, it is appropriate to
have able formal logical definitions of everyday terms, for the purposes of
reasoning about the faults.

There is no reason to restrict the labelling procedure to the fault tree. It can
well apply to the CID, also, and we have in fact applied it, by defining the
equivalence of the predicate Open() with the predicate Not Closed(); in Figure
10.22, we already replaced the predicates Open(Vent1) and Open(Vent2) with
the predicates Not Closed(Vent1) and Not Closed(Vent2).* Such intertranslation
of predicates is precisely the same as choosing labels: logically, one is defining
new primitive predicates in terms of other, previously defined, predicates. Thus
we enter these into the definition table also, as in Figure 10.24. The glossary
file created as input into the graph-drawing program is shown in Figure 10.25.

4This led to the double negation of Closed() in the fault tree labels, and, had we been
concerned to perform Boolean simplification, we would eliminate this double negation. However,
since we went straight to choosing intuitive labels as in Figure 10.24, there is no need to perform
Boolean simplification as well; it is merely an extra step.

Generating Fault Trees from CIDs

158

((@uap)pasolD)
puy
(QuaA)uadQ spuewwos 101edo

((Quap)uad(spuewwod 1o1esadQ 10N)

puy
(ySrurep)uQ saaredrad 101e10d0

(OuSiurep))uQ saareorad 1ojerad(10N) ((ySiurep)uQ 10N) ((1uap)paso)) (11w A)uad)purwitio)) 10N)
puy puy puy puy
(ysrjurepm)uQ (10SUDGINSSAIPUR [)UO (13w A)uadQ)purwo) (10SUDGAINSSAIPUR [)UO

(QUdA)P3sOID (DUdA)P3Iso[D

((10suagaInssaigyue])uQ 10N)
puy
O< (ue])amssaig

20UBID[0} JO INO
1sh[ee))ormeradws,

Q0URID[0] JO INO
OH)ameradw,

20UBID[0] JO INO
wea)g)arneradua,

\

QWIN[OA PaxI ;

20UBID[0] JO INO
(OH)Amuend)

90URII[O} JO INO
(wearg)Amueng)

Q0URID[O) JO INO
(3onpoig)amerodwa],

N < (Jue],)aInssaig

(queg)parmdny

: The Fault Tree

Figure 10.23

10.8 Implementing Fault-Tree Generation 159

Label Definition
Sensor Failure Pressure(Tank) > @ And
Not On(TankPressureSensor)
Ventl Automation Failure | On(TankPressureSensor) And
Not Command(Open(Vent1))
Vent1 Failure Command(Open(Ventl)) And
Not Not Closed(Ventl1)
Indicator Failure On(TankPressureSensor) And
Not On(WarnLight)
Operator Fails On(WarnLight) And
to See Indicator Not Operator perceives ON(WarnLight)
Operator Failure Operator perceives ON(WarnLight) And
to follow procedure Not Operator commands (Open(Vent2)
Vent2 Failure Operator commands Open(Vent2) And
Not Not Closed(Vent2)
Open(X) Not Closed(X)

Figure 10.24: Label Definitions for the Fault Tree

The result of substituting the label definitions in the fault tree of Figure 10.23 is
shown in Figure 10.26.

10.8.2 The Logical Generation of Labels

There is a straightforward logical procedure (one hesitates to call it an algo-
rithm, because of its simplicity) for generating the precise labels in the fault
tree. Each CID diagram, say Figure 10.22, is already equipped with node la-
bels. Consider a transition, say from Command(Open(Vent1)) to Open(Vent1)
in Figure 10.22. The CID shows that this transition is expected to take place
through the system design. A failure of this intended transition would mean that
the postcondition, Open(Vent1), is not achieved, even though the precondition
Command(Open(Ventl)) is fulfilled.

This failure is thus correctly described by saying that the precondition was
fulfilled, but the required postcondition did not come to pass. The failure event,
then is described by the action formula

Command(Open(Vent1)) And Not Open'(Ventl1)

using the prime notation.

The fault tree generated from this simple example may seem for the example
somewhat complicated, especially in comparison with that from [Lev95] in Figure
9.14. However, it is easy to make mistakes (mainly omissions) when generating
a fault tree by hand, and the automatically generated fault tree in Figure 10.23

160 Generating Fault Trees from CIDs

Glossary file automatically created by cid2ft.pl, Version 1.0
Each line consists of two parts, the left one containing the automatically
generated pre-post conditions, the right one (after the "-->" seperator)

should be filled in manually with appropriate replacements.

If the part left of the "-->" seperator is changed in any way, the
automatic replacement will not work.

Lines beginning with # are ignored.
the use of ’/n’ for line feed is possible.

CI-file (main input file): ../Leveson/Leveson_Tank.ci
glossary file (this file): ../Leveson/Leveson_Tank.gls

H o H H o o O HHHHE R HHEHH

On(TankPressureSensor) And (Not Command(Open(Ventl)))’ -->

Command (Open(Vent1)) And (Closed(Ventl))’ -->

Pressure(Tank) >Q And (Not On(TankPressureSensor))’ -->
On(TankPressureSensor) And (Not On(WarnLight))’ -->

On(WarnLight) And (Not Operator perceives On(Warnlight))’ -->

Operator perceives On(Warnlight) And (Not Operator commands Open(Vent2))’ -->
Operator commands Open(Vent2) And (Closed(Vent2))’ -->

Figure 10.25: Glossary File for the Fault Tree

161

10.8 Implementing Fault-Tree Generation

aI[re 7 JUSA

2INPAd0IJ MO[[0] OF
aInyre, 1ojerdQ

90ULIA[0) JO INO

J0Je10IpU] 99 O)
s[re JoyeradQ

QIn[re,J 10JedIpuy

\

ampreg
uonewIONY | JUd

G100
N
/

(QuaA)PasoID

(1IUSA)P3so[D

aIm[re,] JOsuaS

\

Q0URII[0} JO INO
3sArere))armerodwd

Q0URIS[0] JO INO
DH)enjerodws,

90UBIA[0) JO INO
QWIN[OA PAXI]

(wea)g)Amueng)

Q0ULIA[0) JO INO
(yonpoig)ermjeradwo],

N < (Jue])ainssaig

(que1)parydny

Q0URIS[0) JO INO
weo)S)arnjeraduwo

Figure 10.26: The Fault Tree with Defined Labels

162 Generating Fault Trees from CIDs

is guaranteed to be free from omissions, providing that the CID from which it
was generated is correct. Superfluous nodes in the automatically-generated fault
tree can always be omitted by hand (by modifying the intermediate dot source
code), if it is so wished, but it is much harder to identify omissions that should
be present.

As an example, note that the subtree for Valve 2 in Figure 9.14 does not
include a node for failure of the sensor. Even though a specification of the system
for which this is a fault tree is not at hand, it is certain that a pressure sensor
must be present in the Valve 2 subsystem, in order to announce to the operator
the overpressure situation. A failure of this sensor is likely to have the effect that
an overpressure situation exists but is not annuciated, and this is likely to lead
to the situation in which PRV 2 does not open, which, in conjunction with a
situation in which PRV 1 does not open, could lead to an explosion, according
to the fault tree.

If the pressure monitor for the Valve 2 subsystem is identical with that for the
Valve 1 subsystem, as in our example in Figure 10.1, then this is a common-cause
failure of both valve subsystems. Such common-cause failures are recognised by
the automatic fault-tree generation algorithm, and denoted just once in the ap-
propriate place (in Figure 10.23, at a disjunctive node above the individual failure
nodes Closed(Vent1) and Closed(Vent2); of course the failure of the pressure sen-
sor entails both of these predicates, but although they are true, they are not
true because of failures of Vent! and Vent2, which the nodes Closed(Vent1) and
Closed(Vent2) are intended to convey).

If the pressure monitors for the two valve subsystems are different, they would
be differently denoted, and failures of each subsystem could well be assumed to
be independent, in which case one would place two separate nodes under the
respective valve failure nodes Closed(Vent1) and Closed(Vent2), as indeed the
fault tree in Figure 9.14 has under the one, but not the other, subsystem failure.

We feel that the automatic raising in such circumstances of common-cause
failure is always an appropriate cognitive optimisation to make in a fault tree,
for the following reasons:

1. The resulting fault tree makes a logically equivalent statement to the tree
with an unraised common-cause failure;

2. The common-cause failure is not denoted through its relations to its causal
consequences, but is emphasised early on when descending through a fault
tree (which one would do if using it as a debugging aid after a failure);

3. The common-cause failure appears just once, and not multiple times, in the
tree, declassifying its specious status as “common cause”, which refers more
to the way it was discovered or represented than it does to any intrinsic
property of the failed system or subsystems;

10.8 Implementing Fault-Tree Generation 163

Warning Computer
light controller

®

Hydrocarbon in [)i(}

Steam in

E)% Vent 1

[)*(} Product out

1
1
1
I
1
1
1
I
1
[

Catalyst in &(} _ 9(} Vent 2

N—

Pressure
Tank

Figure 10.27: Another Pressure Tank

4. It is one failure type, and is represented precisely once in the resulting fault
tree as is appropriate to its status as a failure type, rather than multiple
times.

10.8.3 A Second Example

For a second illustration of the use of this tool, we chose the pressure tank example
in Figure 10.27, taken from the textbook [KH99]. The fault tree given in [KH99|
is reproduced in Figure 10.28. Our development reveals obvious lacunae in this
proposed fault tree. The CI-Script for the whole system, for the relief valves,
and for the inlet steam pipe, is similar to that in Chapter 9, and is shown in
Figure 10.29, Figure 10.30, and Figure 10.31, respectively. The CIDs for the
whole system, for the relief valves, and for the inlet steam pipe, are shown in
Figure 10.32, Figure 10.33, and Figure 10.34, respectively.

The automatically-generated fault tree for the system is shown in Figure 10.35,
and the fault tree with defined labels using the glossary in Figure 10.36 is shown
in Figure 10.37. This may be compared with the fault tree from [KH99] in
Figure 10.28, to see the difference between a carefully generated fault tree from
a believable CID, and a fault tree generated by hand as a toy example. We do
not regard the reduced size of the latter as any advantage at all, compared with
the extent of the information loss. We found much to criticise in the fault tree in
Figure 10.28, and we think the reader will also.

Generating Fault Trees from CIDs

164

uado 03 s[rejy
QATRA JOI[OY

mno
101810dQ

aissaid aAar[ax
0} 2In[Ie

S[reJ
IS[[ONU0D)

SINJJ0
ainssaid
$S90XH

uonjerado
oyesun

Figure 10.28: The Fault Tree from [KH99]

10.8 Implementing Fault-Tree Generation 165

[0] /* Ruptured(Tank) // */
[1] /* Pressure(Tank) > N // %/

[11 /\ [-.1] /* Quantity(Product) // + */
/\ [-.2] /* Temperature(Product) // + */
/\ [-.3] /% Fixed Volume // */

[1.1] /\ [-.1] /* Quantity(Steam) // +,TIME */
/\ [-.2] /* Quantity(HC) // +,TIME %/

[(1.2] /\ [1.1.1]1 /x // +,TIME */
/\ [1.1.2]1 /% // +,TIME */
/\ [-.3] /* Temperature(Steam) // + */
/\ [-.4] /* Temperature(HC) // + */
/\ [-.5] /* Temperature(Catalyst) // + x/

[1.3] /\ [-.1] /* Closed(Ventl) // */
/\ [-.2] /* Closed(Vent2) // %/

[1.1.1] /\ [-.1] /* Open(SteamValve) // */
#include "Steam.ci"

#include "Vents.ci"

Figure 10.29: The Pressure Tank CI-Script

[0] /* Not Fixed Volume // */ {< B }
/\ [1] /* Not Closed(Ventl) // %/
/\ [2] /* Not Closed(Vent2) // */
(11 /\ [-.1] /* Command(Open(Ventl1)) // */
[1.1] /\ [-.1] /* On(TankPressureSensor) // *x/ { B >}
[1.1.1] /\ [-.1] /* Pressure(Tank) > N // %/

(21 /\ [-.1] /* Command(Open(Vent2)) // */

[2.11 /\ [1.1.1] /x // */
Figure 10.30: The Relief-Vent Subsystem CI-Script

166 Generating Fault Trees from CIDs

[0] /* Quantity(Steam) // */
[1] /* Not Open(SteamValve) // */ {< A }

[1] /\ [-.1] /* Command(Close(SteamValve)) // */
/\ [-.2] /* Operator commands Close(SteamValve) // */

[1.1] /\ [-.1] /* On(SteamPipePressureSensor) // */ { A >}
[1.1.1] /\ [-.1] /* Pressure(SteamSupply) > M // */

[1.2] /\ [-.1] /* Operator perceives On(WarnLight) // */
[1.2.1] /\ [-.1] /* On(WarnLight) // */

[1.2.1.1] [1.1.1] /* ignored // */

Figure 10.31: The Inlet Steam Pipe CI-Script

167

10.8 Implementing Fault-Tree Generation

(AR AWEAS)uUadO
(TIU A)Paso)D (Zud A)pasorD (sArere))armeradwo], (OH)2erdway, (weoag)omjerodwa], (OH)Amuend) (weayg)Amuendd)
\
/M/; J}Eﬁf ANIL+ FNIL+ \ FNIL+
QWN[OA PIXI] (3onpoig)ejerodwa], (3onpoig)Ainueng)
+ +
N < (que],)ainssaig
(que)permdny

Figure 10.32: The Tank CID

Generating Fault Trees from CIDs

168

N < (Jue],)2Inssaid

(1T0SuaSAINSSAIJUR I)UQ

e

N

((Qua A))uad)puewtno))

(13U A)uad)puewitno))

\

(QWU_A)PIsO[D 10N

N

|

(TIUSA)PISOID 10N

/.

QWIN[OA PIXI] ION

Figure 10.33: The Relief Vent Subsystem CID

169

10.8 Implementing Fault-Tree Generation

N <

(A1ddnSwea§)ainssarg

(Josuagainssargodiquealg)uQ

/

(ySriurep)uQ

/

(ySrure g\)uQ saareorad 1ojerad

((9ATE AWIB)S)ISO[D)) puBWIIO))

\

(9A[E AWEDIS)3SO[D) Spuewiod J0jerodQ

~

(eAreAweaS)uad(10N

(weds)Amuend

Figure 10.34: The Inlet Steam Pipe CID

Generating Fault Trees from CIDs

170

((@uap)pasold)
puy
((puap)uadQ)purwo)

(((puap)uadQ)puewitio)) J0N)
puy
(10SU2SINSSAUR [)UO)

.((10suagamssargyue [,)uQ 10N)

(3[R AWED)S)3s0[) spuBWwod 101e1d() 10N)
puy
(y3rurep)uQ saarorad roerado

(QuSrue g)uQ soaraiad 1012100 10N)

((uBrTUERA)UO 10N)
puy

A4
(uSrurepm)uQ (10suagamnssaigadiquieag)uQ

(((eA[e AW)2s0[D)purIWo)) 10N)
puy
9gaInssaIgadiquiealg)ug

(x

(SA[RAWRAIG)ISO[D) SPURWIWOD J0jeradQ) 10N ((A[e AWEG)SO[D)puRWIWO)) 10N

((13uap)pasolD)
puy
((nuap)uado 0

((1osuagamssargadiguie§)uQ J0N)
puy
0O < (Aiddngueayg)amssarg

(((1us p)uad)purtuio)) 10N)
puy
€ dueL)uo

|

7 (1UdA)PasOD ;

(QUaA)paso[) (dAareAweAg)Uad

90UEI3[0} JO INO
1sA[ere))armeraduwd,

Q0URINO) JO N0
OH)2meIadwa,

90URIS[0) JO INO
wearg)arnjeradwa

20UEI[0) JO JNO

puy (wearg)Amuendy

W < (ue],)2unssaig

QURID[0] JO INO

SUIRIOA PoXtd ; (1onpoig)aimeradway,

N < (quep)aInssaig

(yuep)paimdny

The Generated Fault Tree for the Second Example

Figure 10.35

10.8 Implementing Fault-Tree Generation 171

Glossary file automatically created by cid2ft.pl, Version 1.0
Each line consists of two parts, the left one containing the automatically
generated pre-post conditions, the right one (after the "-->" seperator)

should be filled in manually with appropriate replacements.

If the part left of the "-->" seperator is changed in any way, the
automatic replacement will not work.

Lines beginning with # are ignored.
the use of ’/n’ for line feed is possible.

CI-file (main input file): ../Kammen-Hassenzahl/Tankl.ci
glossary file (this file): ../Kammen-Hassenzahl/Tankl.gls

H o H B HHHHHHHHE R HEHEHH

On(SteamPipePressureSensor) And (Not Command(Close(SteamValve)))’ -->
Pressure(SteamSupply) > Q And (Not On(SteamPipePressureSensor))’ -->
On(SteamPipePressureSensor) And (Not On(WarnLight))’ -->

On(WarnLight) And (Not Operator perceives On(WarnLight))’ -->

Operator perceives On(WarnLight) And (Not Operator commands Close(SteamValve))’ -->
On(TankPressureSensor) And (Not Command(Open(Ventl)))’ -->

Command (Open(Vent1)) And (Closed(Ventl))’ -->

Pressure(Tank) > M And (Not On(TankPressureSensor))’ -->

On(TankPressureSensor) And (Not Command(Open(Vent2)))’ -->

Command (Open(Vent2)) And (Closed(Vent2))’ -->

Figure 10.36: The Glossary File for the Second Example

Generating Fault Trees from CIDs

172

ampreq
uoHEWOoINY ¢ U,

, |

2IMPad0oid MO[[0] OF
amjreq 1oreradQ

101821pU] 93§ 0}
s[req 10jerodQ

21n[Te I0JedIpu
9INSSAIJ Wedg

2In[Ie, UONEWoINY
QA[BA WEAS

(9ATE AWEQ)S)3SO[D) spuewuod Jojerad() 0N (AR A WRD)S)3SO[D)) puBUO)) JON

ampreq
uonEWoINY | U,

B R RNIEN
QInssald wealg

(QdA)Paso[D) _ (1UdA)P3sOrD

_ (aATeAWERAIS)URdO

am[re,] Josuag

™

QOURID[O} JO INO
1sA1ere))arnjerodund

90URIS[0) JO INO
OH)amyeroduo

JOURIS[O] JO INO
wed)S)ornjerodurd

20URIA[0) JO INO
(weayg)Amueng)

Q0UBIS[0) JO INO
(OH)Amuend)

QWIN[OA POXI

Q0URIS[0) JO INO
(3onpoig)ameradwa],

N < (que)amssaig

(ue,)parmdny

The Fault Tree with Defined Labels

Figure 10.37

