Chapter 17

Indeterminacy and the Endgame

17.1 Logical Analysis of Handover Failures

A Predicate-Action Diagram (PAD) is a form of ‘state machine’ definable in logic,
which illustrates intuitively and clearly how a finite-state process defined in TLA
works. The states of a PAD are defined by state predicates, and the transitions
(arrows) between states by actions. A specification of a process conforming to
this PAD would entail that whatever action (from the defined actions) was taken,
it is guaranteed that one ends up in a state satisfying one (a precise one) of the
defined state predicates.

17.1.1 Defining the PAD Rigorously

SATC | —>2% o LATC |—H9BC | BATC
C
S NP
V LtoM.C

- J

Figure 17.1: Predicate Action Diagram for the ATC Handoffs

The PAD that we wish to define is illustrated in Figure 17.1. Its definition in
terms of the TLA+ modules in Section 16 is given in the TLA+ module in Figure
17.2. The intuitive meaning of the PAD is that SATC could hand over correctly
or incorrectly to LATC. If incorrect, then no matter what LATC did, the flight
continues (incorrectly) to Brussels. We do not consider the possibility that an
error from SATC was cancelled out by another error from LATC, because we are
not interested in odd cases in which everything turns out right in the end. We

247

248 Indeterminacy and the Endgame

are interested first in the actual case, in which everything actually did turn out
wrong, and second in the ‘usual’, correct, handoff sequence. If the handoff from
SATC to LATC was correct, there are two possiblities shown: either the correct
handoff from LATC, which would have been to Maastricht ATC, or an incorrent
handoff to BATC. It should be emphasised that the graphical PAD is a helpful
illustration, but that Figure 17.2 is the precise specification with which we work
in the analysis.

17.1.2 Detecting possible sources of error

We reason from the TLA+ specifications to detect possible procedural errors.

By way of example, let us assume that an error occurred on the communication
between SATC and LATC. We aim to find out what this error could be. The
correct communication is defined by the predicate

—-StoL.C

By evaluating this expression using its specification given in PAD.ATCcomm _history
and ATCcomm_history, we obtain

=StoL.C £ —5t0Leorrect
and

—St0Leorrect = V —Stol
V —"UNCHANGED persistent_data

(Notice that (StoLA-UNCHANGED persistent_data) is equivalent to StoLincorrect »
since “UNCHANGED persistent_data implies persistent_data’ # persistent_data.)

We analyse —StoL further:

-Stol, = V —~SATC.Upload(fid)
V = LATC .Download

Now we insert the specifications of SATC.Upload(fid) and LATC.Download:

17.1 Logical Analysis of Handover Failures 249

module PAD.ATCcomm_history

extends Naturals, Sequences, ATCcomm, ATCcomm_history

SATC = 3J!msg € SATCdata : N msg[persistent_data)
A msg[persistent_data)

d1msg € SATCdata : N msg[persistent_datal[fid] = “NW052”
A msg|persistent_data][fdata] = “FRA”
LATC2 = 3Jlmsg € SATCdata : A msg|persistent_data][fid] = “NW052”
A msg|persistent_data]|fdata| # “FRA”

BATC = 3F!msg € SATCdata : A msg[persistent_data][fid] = “NW052”
A msg[persistent_data)|fdata] = “BRU”

—

fid] = “NW052”
fdata] = “FRA”

—

LATC

|

—

MATC = 3!msg € SATCdata : msg[persistent_data][fid] = “NW052”
StoL.C = StoLerrec

StoL.I = StoLincorrect

LtoB.C = LtoB coprect

LtoB.I = LtoBincorrect

LtoM.C £ LtoM coprect

LtoM.I = LtoM incorreet

SomeAction = V StoL.C
V StoL.I
V LtoB.C
V LtoB.I
V LtoM.C
V LtoM .1
Safety = A Init
A D[SomeACtion]persistent_data

Figure 17.2: The Communications History Module in TLA+

250 Indeterminacy and the Endgame

—-Stol, = V — |3 !msg € SATCdata : A msg[l] = fid
A SATCdata' = SATCdata \ {msg}
A SATC .Send(msg)

V = | A |storage| < StorageSize
A LATCdate’ = LATCdata U {Head(channel)}
A LATCtz.Receive
£ VVl!msg € SATCdata : V msg[l] # fid
V SATCdata' # SATCdata \ {msg}
V = SATC.Send(msg)

V |V |LATCdata| > StorageSize
V LATCdata' # LATCdata U { Head(channel)}
V = LATCtz. Receive

Finally we replace SATC.Send(msg) and LATC.Receive by their specifica-
tions:

-Stol, = V V!msg € SATCdata : V msg[1] # fid

V SATCdata' # SATCdata \ {msg}
V msg ¢ Messages
V Len(channel) > ChannelSize
V channel # channel o (msg)

V |LATCdata| > StorageSize

V LATCdata" # LATCdata U { Head(channel)}

V channel = ()

V channel' # Tail(channel)

—StoL.C subsumes many actions, of course, that have nothing to do with any
attempted handover from SATC to LATC. But assuming that a handover was
attempted, but failed, we can use the table to tell us what the possible actions
could have been. Assuming that error messages had been announced as expected
(marked as (x)), we can identify four possible errors:

1. loss/modification of SATCdata
2. erroneous data sent (a) or data lost (b)
3. channel data entered erroneously to LATCdata

4. erroneous transmission over channel

17.1 Logical Analysis of Handover Failures 251

Formula Meaning
msg[1] # fid no data for FID present (*)
SATCdata’ # SATCdata \ {msg} loss/modification of SATCdata
msg ¢ Messages invalid /corrupted data
Len(channel) > ChannelSize channel overflow (*)
channel # channel o (msg) erroneous data sent or data lost
|LATCdata| > StorageSize LATCdata overflow (*)

LATCdata’ # LATCdata U { Head(channel)} | channel data entered erroneously
to LATCdata

channel = () no data transmitted (*)
channel’ # Tail(channel) erroneous transmission over
channel

(*): Error message expected

Figure 17.3: The Meaning of Formulas in the Communication Analysis

Let us now assume a reliable (lossless, translation-error-free) channel (while
keeping in mind that this assumption could indeed be false). Possible mistakes
can therefore only happen in the ATCCs. So item 4 and alternative (b) of item
2 may be ignored. The possible errors left are then

e The data for Flight NW052 was in SATC database, but was either modified
by mistake or completely lost (see error 1). Since we know from the story
that data was sent to LATC, we can abandon the latter supposition (oth-
erwise we have found a really serious problem with the SATC’s computer
system!...)

e The data sent by SATC was erroneous, either because it was already false
in the database (see above) or because an error was made when entering
the data during the transfer process to LATC (error 2(a)).

e Correct data reached LATC, but it was changed mistakenly when it was
entered to LATC database (error 3).

Any of these mistakes would result in a state described by predicate LATC?2.
These represent the logically possible ways (assuming a reliable channel) that a
failure in StoL could have occurred, provided that the ATC handovers satisfy
the (very general, therefore probably applicable) TLA+ specifications in Section
16. The other handover or handling failures can be analysed similarly, and these
analyses not only result in the PAD in Figure 17.1, but tell us very precisely what
the possible errors could have been.

252 Indeterminacy and the Endgame

17.1.3 Putting all the Pieces Together

We can perform the analysis presented in Section 17.1.2 for the transmission
of data from SATC to LATC (StoL) similarly for LtoB (and of course LtoM
to cover the expected world), too. The result is a completely rigorous logical
analysis of the failure possibilities in the ATC handover sequence. We emphasise
that nothing has been left out of the logic — full specifications have been given
and the definitions of the actions manipulated logically to enumerate the possible
ways in which a handover can fail.

A summary of possible errors in the StoL — and — LtoB-world is given by the
PAD in Figure 17.6. This may lead us to further field investigation to narrow
the choice of possible errors down even further, maybe to the point at which we
could definitively state which error occurred; or it may lead us to recommen-
dations which would preclude — or at least considerable reduce the chance of —
any of these possible errors occurring in the future. (Recommendations, along
with Findings, and statements of Probable Cause and Contributing Factors, are
a ‘standard output’ of an accident investigation.) A certain amount of indeter-
minacy may be expected — we should not always expect to be able to narrow
down the choice of possible procedural errors to one definite error. In such a
situation, the PAD expresses precisely what is known about the situation, show-
ing the possible alternatives and their consequences in precise form. This may
often be as good as we can get. In this case, we can go no further — we have no
more information that enables us to determine which of the possible erroneous
behaviors actually occurred in the incident.

17.2 The Endgame

The analysis appears to be nearly complete. There are two major points to
consider. First, how we may constrain the hypotheses to analyse a possible or
probable scenario, and how indeterminacy may be represented. We shall consider
these points in Sections 17.2.1 and 17.2.2.

Second, how do we know that the analysis is correct? So far, we have been
proceeding informally. Do we have reason to believe our analysis is correct ac-
cording to the general principles of WBA? In fact, we don’t. From our informal
reasoning so far, we construct the ‘final’ WB-Graphs in Figures 17.4 (pictorial)
and 17.2.1. However, in the course of constructing the formal proof according to
the formal rules of EL in Part part:proof, we shall find that various additional
facts and hypotheses need to be added in order to make the formal proof correct.
Thus our intuition only takes us so far. Constructing the formal proof that an
analysis suffices is generally necessary to find the gaps in the informal reasoning.
But back now to finishing off the informal WBA.

17.2 The Endgame 253

17.2.1 Constraining the Hypotheses

We do not in fact know which of the state predicates given in the module in Figure
17.2 is true. However, the source texts contain such assertions or assumptions:
for example, that {3a} holds. We cannot say from the sources whether (3b) or
(3¢) or both are false. It is also not necessarily advisable to take assumptions
made in sources for true assertions. They may just be unintentional, unanalysed,
assumptions which an analyst should expose to explicit consideration.

To complete discussion of the example, we investigate just one of the possibil-
ities. Suppose we assume (3¢)'. We then can conclude that (3b) is false, though
either the data or the flight plan (or both) transmitted to aircraft and BATC by
LATC was erroneous. Consequently, we would then need to determine whether

[221] London received false data from SATC
or
[222] data was falsified during processing in LATC.

Although both possibilities are given in [dWL95], we learn from [Lad95a] that
[221] was asserted. So let us assume this also.

We need to analyse the relation “(4) < (3)” to replace it by a causal expla-
nation. To illustrate this last step, let us take it here as true that [221]. Since we
know about the procedures performed by ATC instances now, we should include
four more nodes in the graph:

(31) SATC procedures are implemented correctly

(32) FI is correct at SATC

(33) AC position and direction of flight is consistent with FI at SATC
[StoL] FI from SATC imply next ATC is LATC

This leads to the graph, totally based on causality, without any further <— arrows,
that appears in Figure 17.4. The textual form appears in Figure 17.2.1.

17.2.2 Indeterminacy

Is that all we can do? As far as the facts we can directly derive from our textual
sources are concerned, it seems so, since there aren’t any more facts in the source
text! Further analysis will be based mainly on assumptions, although it is not
absolutely speculation. There are two ways in which we can do more. One is to
write the formal proof, which we consider in Section 17.3.

The other is as follows. As we discovered in our analysis, under the assumption
that wrong data were sent by SATC, this sending of incorrect data would be one

'We also could assume (3b) at this stage. This is just to define a starting point for further
investigations.

254 Indeterminacy and the Endgame

A N
Gz (1]
v
Figure 17.4: The Supposedly ‘Final’ WB-Graph

of the fundamental causes of the incident. We need a method then of handling
assumptions in the analysis, since finding why erroneous data was entered to
certain computers might supply hints on what to change to prevent such incidents
in future;

To argue with assumptions, we introduce more notation to differentiate as-
sumed nodes from those based on facts. We denote states by “{(A))”, events by
“[A]”, processes by “4 A}}” and non-events by “(A))”.

Let us assume a solution, then, to the earlier non-determinacy in Section 16,
namely that SATC sent the wrong data to LATCC. Under this assumption, why
did SATC send wrong flight data?

We assume that

{(2211)) correct information was provided to SATC,

[2212] information is recognized by air traffic controller

and

(2213)) communication of data between SATC and its adjacent ATC
is error-free,

are true — this need not necessarily be so, it is just one way to base an argument.
To argue e.g. that

[2214] ATC controller entered erroneous data into computer

we can use different reasoning, depending on what else we assume. Let Controller
stand for the Shannon controller. Saying that

{(2215)) Controller correctly recognized information displayed
and
[2216] Controller made typing error

17.2 The Endgame

255

[1] /* AC lands at Brussels RWY 25 */
[-.1] /* Crew (CRW) realizes they are landing at the wrong airport */
[-.2]1/* CRW opts to continue landing */

[1.1] /\[-.1] /* CRW gets visual contact to Brussels airport */
/\{-.2} /* CRW notices that Brussels’ airport layout is different
from Frankfurt’s */

[1.1.1] /\[-.1] /* AC breaks out under clouds */
/\<-.2> /* AC near Brussels Airport */

CRW procedures */

AC in BATC area */

/\<-.3> /%

/\ <2> /*
<1.1.1.2> (-.1) /x*
(1.1.1.2.1) /\{-.
/\<-.
/\[-.
/\(-.

<2> /\<-.1> /* LATC
/\<-.2> /x LATC

CRW did not realize that they were on wrong course,

UNTIL:
1} /%
2> /%

3] /*
4) /*

[111] =/

CRW addresses BATC controller as

‘‘Frankfurt’’ several times, */

ILS has different frequency for Frankfurt. */
CRW asks for the Bruno VOR’s frequency. */
Brussels did not question the addressing error
although it happened more than once */

procedures */
uses false flight data for NW052x%/
/\ <3> /% AC in LATC area */

<2.2> [-.1] /* London received false data from SATC */

<3> /\<-.1> /* SATC handoff procedures under this flightplan
are to LATC */
/\<-.2> /* FI is correct at SATC */
/\<-.3> /x AC-PD is sufficiently consistent with FI at SATC x*/
/\ <4> /% AC in SATC area */

[1.2] <-.1> /*x CRW has safety reasons for continuing landing */

Figure 17.5: The Supposedly ‘Final’ Textual WB-Graph

256 Indeterminacy and the Endgame

would lead to [2214] as well as would

{(2217)) Controller incorrectly recognized displayed information and
[2218] Controller typed recognized information correctly.

<< 2211 >>
<< 2213 >>
<< 2215 >>

<< 2211 >> << 2211 >>
<< 2213 >> << 2213 >>
<< 2217 >> pre [2214]

Figure 17.6: Predicate Action Diagram displaying possible worlds

This reasoning is not deterministic: either of these two circumstances could
have caused [2214]. There are alternatives here, also, not distinguished by facts
in the history. We can use a form of PAD here, too, to distinguish the possibilities,
but this time of actual states and actual actions that occurred, in Figure 17.6

17.2.3 Adapting PADs

We base this form of PAD not on the pure language of TLA, but on its extension
EL, which we introduce in Part IV. This also means that the interpretation
changes a little, although formal use is similar.

Since we speak of procedures and obligations for computer and physical sys-
tems as well as organisational procedures, to say that a system defined as a state
machine is specified as having state S5 follow state S; when action A is performed
is to say that the performance of action A in state S, along with the specifica-
tion, explains why state S5 happened. In TLA, an implication is provable iff it
is a logical truth. So in our formulation, this implication must be interpreted as
logical implication:

= TLAA = B (]_7]_)
A~ B

Using this now to interpret the PAD, it means that
Spec AN S1ANA > OS (17.2)

(actually, not just ©Ss, that So will happen eventually, but in fact S: that the
values of the state variables at the end of the action A will be such as to make
the state predicate S5 true. But this TLA notation is not needed here to explain

17.3 The Really Final WB-Graph 257

causality for machines. See also Section 16.1 for a reminder of the meaning of
O).

That &S5 follows tense-logically from Spec A.S1 A A thus means that, if Spec A
S1 A A is in fact true, that is if Spec is fulfilled and A is true and the machine is
in the state described by S, then S, will inevitably occur. It is an explanation
therefore for the occurence of S, —in fact a causal explanation because physical
systems, digital or otherwise, are designed to be causal devices — that SpecAS1AA.
And more — this latter is a sufficient causal factor for the occurrence of Ss.
Therefore because

Spec A Sl NA > SQ (173)

Thus our adaptation of PADs is formally similar to their suggested use by Lam-
port for specification, but we interpret the transitions as causally-explanatory
links via this sufficient-causal-factor explanation. In a PAD, of course, the role
of the specification is implicit: the PAD s the specification. Its meaning is that,
if the specification is to be fulfilled, these transitions must happen. Whether
one interprets its meta-meaning as causal or rather deontic need not concern us
further here. This somewhat wider interpretation of PADs will enable them to
serve rigorously also for combinations of human-operator action in procedures,
or in standard behavior. It is stretching the use of the language to speak of a
human operator performing according to specification — we much prefer to speak
of a human as performing according to procedure, because she ought to: deontics
rather than physical inevitability. After all, unlike machines, a human operator
can behave contrary to procedure without anything physically being wrong, or
anything being wrong with the design. But formally we may interpret the PAD
using deontics, thereby allowing it to be used in the same manner for machines
or for human processes — an extension of its original application obtained just by
thinking a little more broadly.

17.3 The Really Final WB-Graph

The analysis has not yet been checked for correctness — that is, that each causal
assertion is true, and that the Causal Sufficiency Condition is satisfied for each
set, of causal factors of a node. For this, we must perform a formal proof in EL.
When we do this in Part IV, we shall find that our analysis is not yet complete
and we need a few more nodes.

This discovery of missing nodes through enforced rigor is a general phe-
nomenon known to those in system verification, and others who concern them-
selves with precise formal proving. It is common in the system-verification world,
for example, to attempt mechanically to check the journal proof of, say, the cor-
rectness of a concurrent algorithm, and to find gaps which need to be fixed or
filled in. See for example, [Rv93] for commentary on errors found during the

258 Indeterminacy and the Endgame

formal verification in the published hand proof of a Byzantine-fault-tolerant al-
gorithm for synchronising clocks in the replicated computers of a digital flight
control system. Similarly, [SM95] describes the formal specification and verifica-
tion of the architecture of the Collins AAMP5 avionics processor, the successor
of the popular AAMP2 processor. All the instructions for the chip were specified,
and a proportion of them verified. One deliberately-seeded error was found, and
one error was found which noone previously knew about.

We are not immune to this phenomenon, and we don’t know anyone who is.
The formal proofs are really necessary if one needs to ensure that one has made no
mistakes. The formal proof in the logic EL of our causal analysis of the example
may be found in Chapter 22. We found during the proof that we needed to
add four extra nodes to the WB-Graph. One discovers such omissions when one
realises during a proof that one cannot prove the sentence one is trying to prove.
Often, this sentence is a conditional, and upon inquiry into the reason for this, it
is common to realise that a crucial assertion is missing from the antecedent of the
conditional. One determines what it is, adds it in, and finishes the proof (one may
need to do this more than once!). Oftentimes, when the sentence that one realises
one cannot prove is not a conditional, one realises that in fact some hypotheses
are missing and that it should be a conditional (with these hypotheses). One
makes it so, performs the proof and continues.

The final pictorial version of the graph appears in Figure 17.7 and the final
textual form in Figure 17.8. We passed the text in Figure 17.8 through the wb2dot
tool [Hoh98], which converts the textual form of a WB-Graph into input for the
graph-drawing program dot [Nor| and produces Figure 17.9.

Figure 17.7: The Final WB-Graph

17.3 The Really Final WB-Graph 259

[1] /* AC lands at Brussels RWY 25 */
/\[-.11 /* CRW opts to continue landing */
/\<-.2> /x AC near Brussels Airport */

[1.1] /\[-.1] /* CRW realizes they are landing at the wrong airport */
/\<-.2> /* CRW has safety reasons for continuing landing */
/\<-.3> /* Standard Operating Procedures */

[1.1.1] /\[-.1] /* CRW gets visual contact to Brussels airport */
/\{-.2} /* CRW notices that Brussels’ airport layout is different
from Frankfurt’s */
[1.1.1.1] /\[-.1] /* AC breaks out under clouds */
/\<-.2> /* CRW procedures */
/\<1.2>
/\<2> /% AC in BATC area */

<2> /\<-.1> /* LATC procedures */
/\<=.2> /* LATC uses false flight data for NW052 */
/\<3> /% AC in LATC area */

<2.1> [-.1] /* London received false data from SATC */

<3> /\<-.1> /% SATC handoff procedures under this flightplan
are to LATC */
/\<-.2> /* FI is correct at SATC */
/\<4> /% AC in SATC area */

<1.2> /\(-.1) /* CRW did not realize that they were on wrong course,
UNTIL: [111] */
/\<-.2> /* AC cleared to BATC according to ATC procedures */

(1.2.1) /\{-.1} /* CRW addresses BATC controller as ‘‘Frankfurt’’

several times */

/\<-.2> /* ILS has different frequency for Frankfurt. */

/\[-.3] /* CRW asks for the Bruno VOR’s frequency. */

/\(-.4) /* Brussels did not question the addressing error
although it happened more than once */

/\<-.5> /* Situation remains safe during landing */

/\<-.6> /* Current approach plates are used */

Figure 17.8: The Final Textual WB-Graph

Indeterminacy and the Endgame

260

90uo ey a1ow paudddey 1
ySnoyy[e 10119 Suissarppe ayy
uonsanb jou pip sjassnig
vITt

sowmn

[BIOA3S | JINP{URLY,, S
ID[[ONU0D DLV SISSAPPE M AD
rret

< pasn AN

are sajeyd yoroxdde juaun)
9T

N

[T TN

Surpue| .
s 351100 UOIM UO AIOM KoY}
Suwmp ajes surewar uonemIs
T e ey} 9ZI[ea1 10U PIP YD
/ SITl e

e N
saipaooid DLV 01 N
Suip10ooe DLV 01 pa1ea)d DV
TTT

“UnpUBL] 10§
AKouanbaly juaiayp sey SI
[A¥A!

-Kouanbazy
S JOA ounig dy) 10§ SYSe MAD
€1TTT

OLVS woxy
©JEP S[R] PIATRIAI UOPUO]

1ree

TSOMN 10
eep WSIY as[e) sasn DLV T
Tt

DLVS 12 1921109 I [

sampacord MDD
Trrrr

(&5

\ DLV 0 are uerdySiyy siyy

~ Iopun sainpadoid jjopuey DIVS
e

-~

< BAIE DLVS Ul DV
14

vaIR DLV Ul DV
€

A DLVE U DV
T

SPROO JApUN N0 $)BAIQ DY
rrrrr

$ MNpURL] Woiy
JuaIRIp st noke| podie
S[ossnIg Jey) S0NOU MAD

sampadoiq FunesdQ prepuels
€Tl

Surpue Sumunuod
10J sUOSBaI K1958S SeY M YD

Trl S

wodre Suoim ay e
Surpuey are Ly sazifear YD
el

S

ST
AMY S[OSSNIg 18 Spue| DY
1

Surpuey anunuos 03 sido YD
'l

SJUDAQUN 92INOS |

$2850001d 20108 7

/\mo:zm 20108 2\

SJUIAD DINOS €

sassa001d [eUIAUI ()

SAILIS [RUIAUI T

SIUDAD [RUINUI

SONSNEIS pue puada|

Automatically generated WB-Graph

Figure 17.9

